Oracle (machine de Turing)vignette|upright=2|Une machine de Turing avec oracle peut faire appel à une boîte noire (oracle). En théorie de la complexité ou de la calculabilité, les machines de Turing avec oracle sont une variante des machines de Turing disposant d'une boîte noire, un oracle, capable de résoudre un problème de décision en une seule opération élémentaire. En particulier, l'oracle peut résoudre en temps constant un problème indécidable comme le problème de l'arrêt.
L (complexité)En informatique théorique, et notamment dans la théorie de la complexité, la classe L est la classe des problèmes de décision décidés par une machine de Turing déterministe qui utilise un espace de taille logarithmique en fonction de la taille de l'entrée. Pour être plus précis, l'exigence sur l'espace de taille logarithmique se réfère à l'espace supplémentaire utilisable. Elle est aussi parfois notée LOGSPACE.
Complexité descriptiveEn informatique théorique, la complexité descriptive est une branche de la théorie de la complexité et de la théorie des modèles, qui caractérise les classes de complexité en termes de logique qui permet de décrire les problèmes. La complexité descriptive donne un nouveau point de vue car on définit des classes de complexité sans faire appel à une notion de machines comme les machines de Turing. Par exemple la classe NP correspond à l'ensemble des problèmes exprimables en logique du second ordre existentielle : c'est le théorème de Fagin.
Preuve de travailUn système de validation par preuve de travail (en anglais : proof of work, PoW) est, en informatique, un protocole permettant de repousser, sur un environnement client-serveur, des attaques par déni de service ou d'autres abus de service tels que les spams. Ce système de preuve de travail est utilisé dans des cadres beaucoup plus complexes, pour la validation des transactions de la blockchain de certaines crypto-monnaies comme le Bitcoin. Cette vérification par les mineurs de bitcoins est récompensée par l'émission de nouveaux bitcoins au bénéfice des vérificateurs.
Proof of spaceProof of space (PoS) is a type of consensus algorithm achieved by demonstrating one's legitimate interest in a service (such as sending an email) by allocating a non-trivial amount of memory or disk space to solve a challenge presented by the service provider. The concept was formulated in 2013 by Dziembowski et al. and (with a different formulation) by Ateniese et al.. Proofs of space are very similar to proofs of work (PoW), except that instead of computation, storage is used to earn cryptocurrency.
Preuve d'enjeuLa preuve d'enjeu, preuve de participation ou preuve d’intérêt (en anglais : proof of stake, PoS) est une méthode par laquelle une chaîne de blocs d'une crypto-monnaie vise à atteindre un consensus distribué. Alors que la preuve de travail (en anglais : proof of work, PoW) demande aux utilisateurs d'exécuter plusieurs fois les algorithmes de hachage ou de calculer des puzzles mathématiques selon des algorithmes pour valider les transactions électroniques, la preuve d'enjeu demande à l'utilisateur de prouver la possession d'une certaine quantité de crypto-monnaie (leur « participation » dans la crypto-monnaie) pour prétendre à pouvoir valider des blocs supplémentaires dans la chaîne de bloc et de pouvoir toucher la récompense, s'il y en a une, à l'addition de ces blocs.
Computer-assisted proofA computer-assisted proof is a mathematical proof that has been at least partially generated by computer. Most computer-aided proofs to date have been implementations of large proofs-by-exhaustion of a mathematical theorem. The idea is to use a computer program to perform lengthy computations, and to provide a proof that the result of these computations implies the given theorem. In 1976, the four color theorem was the first major theorem to be verified using a computer program.
Turing-completEn informatique et en logique, un système formel est dit complet au sens de Turing ou Turing-complet (par calque de l’anglais Turing-complete) s’il possède un pouvoir expressif au moins équivalent à celui des machines de Turing. Dans un tel système, il est donc possible de programmer n'importe quelle machine de Turing. Cette notion est rendue pertinente par la thèse de Church, qui postule l’existence d’une notion naturelle de calculabilité.
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Assistant de preuveEn informatique (ou en mathématiques assistées par informatique), un assistant de preuve est un logiciel permettant la vérification de preuves mathématiques, soit sur des théorèmes au sens usuel des mathématiques, soit sur des assertions relatives à l'exécution de programmes informatiques. Beaucoup de projets ont été lancés pour formaliser les mathématiques, en 1966, Nicolaas de Bruijn lance le projet Automath, suivi par d'autres projets.