Paire de CooperEn physique de la matière condensée, une paire de Cooper est le nom donné aux électrons liés entre eux à basses températures d'une manière spécifique décrite en 1956 par Leon Cooper. Leon Cooper montrait qu'une petite interaction arbitraire entre électrons dans un métal peut induire un état de paire d'électrons ayant une énergie plus basse que l'énergie de Fermi, ce qui implique que cette paire est liée. Dans les supraconducteurs classiques, cette attraction est due à l'interaction électron-phonon.
Espace de FockL'espace de Fock est une construction algébrique utilisée en mécanique quantique pour construire l'espace des états quantiques d'un nombre variable ou inconnu de particules identiques à partir d'une seule particule de l'espace de Hilbert H. Il porte le nom de Vladimir A. Fock qui l'a présenté pour la première fois dans son article de 1932 "Konfigurationsraum und zweite Quantelung", traduisible par "espace de configuration et deuxième quantification.
Quasi-particuleLes quasi-particules, ou quasiparticules, sont des entités conçues comme des particules et facilitant la description des systèmes de particules, particulièrement en physique de la matière condensée. Parmi les plus connues, on distingue les trous d'électrons qui peuvent être vus comme un "manque d'électron", et les phonons, qui décrivent des "paquets de vibration". Les solides sont formés de trois types de particules : les électrons, les protons et les neutrons.
Fock stateIn quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an important role in the second quantization formulation of quantum mechanics. The particle representation was first treated in detail by Paul Dirac for bosons and by Pascual Jordan and Eugene Wigner for fermions.
Spectre d'un opérateur linéaireEn mathématiques, plus précisément en analyse fonctionnelle, le spectre d'un opérateur linéaire sur un espace vectoriel topologique est l'ensemble de ses valeurs spectrales. En dimension finie, cet ensemble se réduit à l'ensemble des valeurs propres de cet endomorphisme, ou de sa matrice dans une base. En et en mécanique quantique, la notion de spectre s'étend aux opérateurs non bornés fermés. Soit une algèbre de Banach unifère sur le corps des nombres complexes.
Endomorphisme autoadjointEn mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d'espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype d'espace de Hilbert est un espace euclidien, c'est-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni d'un produit scalaire. L'analogue sur le corps des complexes s'appelle un espace hermitien.
Fluctuation quantiqueEn physique quantique, une fluctuation quantique, ou fluctuation quantique du vide, est le changement temporaire du niveau d'énergie à un certain point de l'espace, expliqué par le principe d'incertitude de Heisenberg qui permet la création spontanée d'une paire virtuelle constituée d'une particule et d'une antiparticule. Pour comprendre ce phénomène, il faut comprendre la nature du vide spatial conformément à la théorie des champs quantiques. Le vide est rempli d’ondes électromagnétiques fluctuantes.
État cohérentvignette|300px|droite|Un oscillateur harmonique classique (A et B) et en mécanique quantique (C à H). Les figures C à H représentent les solutions de l'équation de Schrödinger pour un même potentiel. L'axe horizontal est la position, et l'axe vertical la partie réelle (en bleu) et imaginaire (en rouge) de la fonction d'onde. (C,D,E,F) sont les états stationnaires (états propres d'énergie), et (G,H) non stationnaires.
Opérateur (physique)Un opérateur est, en mécanique quantique, une application linéaire d'un espace de Hilbert dans lui-même. Le terme est une spécialisation du concept mathématique d'opérateur. Une observable est un opérateur hermitien. En mécanique classique, le mouvement des particules (ou d'un système de particules) est complètement déterminé par le Lagrangien ou, de façon équivalente, l'Hamiltonien , une fonction des coordonnées généralisées q, vitesse généralisée et son moment conjugué : Si ou est indépendant des coordonnées généralisées , donc que et ne changent pas en fonction de , le moment conjugué de ces coordonnées sera conservé (c'est une partie du théorème de Noether, et l'invariance du mouvement en respect de la coordonnée est une symétrie).
Transformation conformeEn mathématiques, et plus précisément en géométrie et en analyse complexe, une transformation conforme est une bijection qui conserve localement les angles, c'est-à-dire qui se comporte au voisinage de chaque point où elle est définie presque comme une similitude. Dans le plan, les transformations conformes qui conservent les angles orientés ont une telle utilité qu'il est fréquent qu'elles soient les seules baptisées du terme de conformes. Elles se confondent alors avec les bijections holomorphes.