Symétrie (transformation géométrique)Une symétrie géométrique est une transformation géométrique involutive qui conserve le parallélisme. Parmi les symétries courantes, on peut citer la réflexion et la symétrie centrale. Une symétrie géométrique est un cas particulier de symétrie. Il existe plusieurs sortes de symétries dans le plan ou dans l’espace. Remarque : Le terme de symétrie possède aussi un autre sens en mathématiques. Dans l'expression groupe de symétrie, une symétrie désigne une isométrie quelconque.
Conservation de la masseLa conservation de la masse (ou de Lavoisier) est une loi fondamentale de la chimie et de la physique. Elle indique non seulement qu'au cours de toute expérience, y compris si elle implique une transformation chimique, la masse se conserve, mais aussi que le nombre d'éléments de chaque espèce chimique se conserve (cette loi ne s'applique pas à l'échelle nucléaire : voir défaut de masse). Comme toute loi de conservation elle s'exprime par une équation de conservation.
Théorie de la relativitévignette|Formule de la théorie de la relativité d'Albert Einstein. L'expression théorie de la relativité renvoie le plus souvent à deux théories complémentaires élaborées par Albert Einstein et Mileva Marić : la relativité restreinte (1905) et la relativité générale (1915). Ce terme peut aussi renvoyer à une idée plus ancienne, la relativité galiléenne, qui s'applique à la mécanique newtonienne. En 1905, le physicien allemand Max Planck utilise l'expression « théorie relative » (Relativtheorie), qui met l'accent sur l'usage du principe de relativité.
Physique classiqueLa physique classique désigne d'une manière générale l'ensemble des théories physiques antérieures à l'avènement de théories plus récentes, plus complètes, ou dotées d'un domaine d'application plus vaste. Lorsqu'une théorie physique qui a cours actuellement est considérée comme moderne, et si son introduction a représenté un majeur, les théories précédentes (ou les théories nouvelles basées sur le paradigme antérieur) seront souvent considérées comme relevant de la physique « classique ».
Quadri-momentEn relativité restreinte, le quadri-moment (ou quadrivecteur impulsion ou quadri-impulsion ou quadrivecteur impulsion-énergie ou quadrivecteur énergie-impulsion) est une généralisation du moment linéaire tridimensionnel de la physique classique sous la forme d'un quadrivecteur de l'espace de Minkowski, espace-temps à 4 dimensions de la relativité restreinte. Le quadri-moment d'une particule combine le moment tridimensionnel et d'énergie : Comme tout quadrivecteur, il est covariant, c'est-à-dire que les changements de ses coordonnées lors d'un changement de référentiel inertiel se calculent à l'aide des transformations de Lorentz.
Gauge fixingIn the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
3D displayA 3D display is a display device capable of conveying depth to the viewer. Many 3D displays are stereoscopic displays, which produce a basic 3D effect by means of stereopsis, but can cause eye strain and visual fatigue. Newer 3D displays such as holographic and light field displays produce a more realistic 3D effect by combining stereopsis and accurate focal length for the displayed content. Newer 3D displays in this manner cause less visual fatigue than classical stereoscopic displays.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Brisure de symétrieUne symétrie est brisée quand un système ou les lois qui régissent son comportement ne cessent d'être invariants sous la transformation associée à cette symétrie. On observe des brisures de symétrie en physique (de l'échelle microscopique jusqu'à celle de l'Univers), en chimie (dont de nombreuses transitions de phase) et en biologie (par exemple l'asymétrie gauche-droite chez les Bilatériens). Une symétrie est explicitement brisée lorsque la loi qui régit son comportement est modifiée et n'est plus invariante dû à une cause externe.
Théorie cinétique des gazLa théorie cinétique des gaz a pour objet d'expliquer le comportement macroscopique d'un gaz à partir des caractéristiques des mouvements des particules qui le composent. Elle permet notamment de donner une interprétation microscopique aux notions de : température : c'est une mesure de l'agitation des particules, plus précisément de leur énergie cinétique ; pression : la pression exercée par un gaz sur une paroi résulte des chocs des particules sur cette dernière. Elle est liée à leur quantité de mouvement.