Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Extraction de racine carréeEn algorithmique et en analyse numérique, l'extraction de racine carrée est le processus qui consiste, étant donné un nombre, à en calculer la racine carrée. Il existe de nombreuses méthodes pour effectuer ce calcul. C'est un cas particulier de la recherche de calcul de la racine n-ième. La racine carrée d'un nombre pouvant être un nombre irrationnel, l'extraction de racine carrée est en général approchée. L'extraction de la racine carrée d'un nombre a est identique à la résolution de l'équation x - a = 0.
Algorithme de KarmarkarL’algorithme de Karmarkar est un algorithme introduit par Narendra Karmarkar en 1984 pour résoudre les problèmes d'optimisation linéaire. C'est le premier algorithme réellement efficace qui résout ces problèmes en un temps polynomial. La méthode de l'ellipsoïde fonctionne aussi en temps polynomial mais est inefficace en pratique. En posant le nombre de variables et le nombre de bits d'entrée de l'algorithme, l'algorithme de Karmarkar réalise opérations sur bits à comparer aux opérations pour la méthode des ellipsoïdes.
Analyse convexeL'analyse convexe est la branche des mathématiques qui étudie les ensembles et les fonctions convexes. Cette théorie étend sur beaucoup d'aspects les concepts de l'algèbre linéaire et sert de boîte à outils en analyse et en analyse non lisse. Elle s'est beaucoup développée du fait de ses interactions avec l'optimisation, où elle apporte des propriétés particulières aux problèmes qui y sont étudiés. Certains voient la naissance de l'analyse convexe « moderne » dans l'invention des notions de sous-différentiel, d'application proximale et d'inf-convolution dans les années 1962-63.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Algorithme de recherche d'un zéro d'une fonctionUn algorithme de recherche d'un zéro d’une fonction est une méthode numérique ou un algorithme de recherche d’une valeur approchée d’un x vérifiant , pour une fonction donnée f. Ici, x est un nombre réel appelé zéro de f ou lorsque f est polynomiale, racine de f. Lorsque x est un vecteur, les algorithmes pour trouver x tel que sont généralement appelés « algorithmes de résolution numérique d'un système d'équations ». Ces algorithmes sont une généralisation des algorithmes de recherche d’un zéro d’une fonction et peuvent s’appliquer à des équations linéaires ou non linéaires.
Test de convergenceEn mathématiques, les tests de convergence sont des méthodes de test de la convergence, de la convergence absolue ou de la divergence d'une série . Appliqués aux séries entières, ils donnent des moyens de déterminer leur rayon de convergence. Pour que la série converge, il est nécessaire que . Par conséquent, si cette limite est indéfinie ou non nulle, alors la série diverge. La condition n'est pas suffisante, et, si la limite des termes est nulle, on ne peut rien conclure. Toute série absolument convergente converge.
Delta-2Delta-2 est un procédé d'accélération de la convergence de suites en analyse numérique, popularisé par le mathématicien Alexander Aitken en 1926. C'est l'un des algorithmes d'accélération de la convergence les plus populaires du fait de sa simplicité et de son efficacité. Une première forme de cet algorithme a été utilisée par Seki Kōwa (fin du ) pour calculer une approximation de π par la méthode des polygones d'Archimède.