Théorie conforme des champsUne théorie conforme des champs ou théorie conforme (en anglais, conformal field theory ou CFT) est une variété particulière de théorie quantique des champs admettant le comme groupe de symétrie. Ce type de théorie est particulièrement étudié lorsque l'espace-temps y est bi-dimensionnel car en ce cas le groupe conforme est de dimension infinie et bien souvent la théorie est alors exactement soluble.
Lie algebra extensionIn the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
Foncteur ExtLes foncteurs Ext sont les foncteurs dérivés du foncteur Hom. Ils sont d'abord apparus en algèbre homologique, où ils jouent un rôle central par exemple dans le théorème des coefficients universels, mais interviennent aujourd'hui dans de nombreuses branches différentes des mathématiques. Ce foncteur apparaît originellement dans l'étude des extensions de modules, d'où il tire son nom. Soit A une catégorie abélienne. D'après le théorème de plongement de Mitchell, on peut toujours imaginer travailler avec une catégorie de modules.
Cuiseur solaireUn cuiseur solaire, également appelé couramment cuisinière solaire ou four solaire, est un système de cuisson captant le rayonnement infrarouge du soleil pour sécher, chauffer, cuire, torréfier ou pasteuriser des boissons et d'autres aliments. Il s'agit d'un type de four solaire, d'autres types ayant des usages différents, tels que la production d'électricité.
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
La Quadrature de la parabole (Archimède)thumb|Archimède inscrit un triangle particulier dans le segment de parabole. L'aire du segment de parabole est égale aux 4/3 de l'aire de ce triangle. La Quadrature de la parabole est un traité de géométrie écrit par Archimède au , sous la forme d'une lettre à son ami Dosithée (Dositheus). Cette œuvre énonce 24 propositions sur les paraboles et démontre que l'aire d'un segment de parabole (région délimitée par une parabole et une corde) est égale aux 4/3 de l'aire du triangle inscrit dont la médiane est parallèle à l'axe de la parabole.
Théorème des coefficients universelsLe théorème des coefficients universels est un résultat d'algèbre homologique portant sur les groupes d'homologie et de cohomologie d'un complexe de chaînes. Ce théorème comporte deux volets : d'une part il relie entre elles homologie et cohomologie, et d'autre part il explique le lien entre la (co)homologie à coefficients dans et la (co)homologie à coefficients dans un groupe . Une utilisation courante de ce théorème est de calculer les groupes de cohomologie à coefficient dans un groupe via le calcul de la cohomologie dans , qui sont faciles à calculer (par exemple au moyen d'une décomposition cellulaire).