Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
ActionneurDans une machine, un actionneur est un objet qui transforme l’énergie qui lui est fournie en un phénomène physique qui fournit un travail, modifie le comportement ou l’état d'un système. Dans les définitions de l’automatisme, l’actionneur appartient à la partie opérative d'un système automatisé. On peut classer les actionneurs suivant différents critères : énergie utilisée ; phénomène physique utilisable ; principe mis en œuvre. vignette|Deux actionneurs pneumatiques à crémaillère (Automax, à gauche et en haut), contrôlant chacun une vanne.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Polymère électroactifvignette|Figure 1 : The black strips are the working electroactif polymers. They are powered with the same squared voltage. 300px|vignette|Figure 2 : illustration d'une pince en EAP. (a) Une tension est appliquée, les deux doigts en EAP se déforment de sorte à contourner la balle. (b) Lorsque la tension électrique est coupée, les doigts en EAP reprennent leur forme d'origine et attrapent la balle. (c). Les polymères électroactifs (PEA) ( (EAP)), sont des polymères dont la forme ou la taille changent lorsqu'ils sont stimulés par un champ électrique.
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Cartographie et localisation simultanéesvignette|Une carte générée par le robot Darmstadt. La localisation et cartographie simultanées, connue en anglais sous le nom de SLAM (simultaneous localization and mapping) ou CML (concurrent mapping and localization), consiste, pour un robot ou véhicule autonome, à simultanément construire ou améliorer une carte de son environnement et de s’y localiser. La plupart des robots industriels sont fixes et effectuent des tâches dans un environnement connu.
Mesure stéréoscopiqueLa stéréovision ou mesure stéréoscopique est une méthode de mesure qui consiste à se servir de la prise d'images (photographiques ou numériques) prises de différents points de vue, pour déterminer les dimensions, les formes ou les positions d'objets. Pour cela on utilise : soit des appareils photographiques étalonnés utilisant des films argentiques plans et stables dimensionnellement ou des détecteurs C.C.D à haute résolution pour des mesures statiques ; soit des caméras (film ou CCD) si des mesures dynamiques sont nécessaires (vidéogrammétrie).
Self-awarenessIn philosophy of self, self-awareness is the experience of one's own personality or individuality. It is not to be confused with consciousness in the sense of qualia. While consciousness is being aware of one's environment, body, and lifestyle, self-awareness is the recognition of that awareness. Self-awareness is how an individual experiences and understands their own character, feelings, motives, and desires. Neural basis of self There are questions regarding what part of the brain allows us to be self-aware and how we are biologically programmed to be self-aware.
Filtre particulaireLes filtres particulaires, aussi connus sous le nom de méthodes de Monte-Carlo séquentielles, sont des techniques sophistiquées d'estimation de modèles fondées sur la simulation. Les filtres particulaires sont généralement utilisés pour estimer des réseaux bayésiens et constituent des méthodes 'en-ligne' analogues aux méthodes de Monte-Carlo par chaînes de Markov qui elles sont des méthodes 'hors-ligne' (donc a posteriori) et souvent similaires aux méthodes d'échantillonnage préférentiel.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.