CovarianceEn théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance.
Distance correlationIn statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables.
Pooled varianceIn statistics, pooled variance (also known as combined variance, composite variance, or overall variance, and written ) is a method for estimating variance of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance. Under the assumption of equal population variances, the pooled sample variance provides a higher precision estimate of variance than the individual sample variances.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Galaxie lumineuse en infrarougeEn astronomie, une galaxie lumineuse en infrarouge (LIRG, pour l'anglais luminous infrared galaxy) est une galaxie émettant plus de la luminosité solaire L dans le domaine infrarouge (8-1000 microns) du spectre électromagnétique. Un système plus lumineux, émettant plus de dans l'infrarouge est appelé galaxie ultra-lumineuse en infrarouge (ULIRG, pour ultraluminous infrared galaxy). Un système encore plus lumineux, émettant plus de dans l'infrarouge lointain, est appelé galaxie hyper-lumineuse en infrarouge (HLIRG ou HyLIRG, pour hyperluminous infrared galaxy).
Analyse de la varianceEn statistique, lanalyse de la variance (terme souvent abrégé par le terme anglais ANOVA : analysis of variance) est un ensemble de modèles statistiques utilisés pour vérifier si les moyennes des groupes proviennent d'une même population. Les groupes correspondent aux modalités d'une variable qualitative (p. ex. variable : traitement; modalités : programme d'entrainement sportif, suppléments alimentaires; placebo) et les moyennes sont calculés à partir d'une variable continue (p. ex. gain musculaire).