Hyperbolic spaceIn mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
3-variétéEn mathématiques, une 3-variété est une variété de dimension 3, au sens des variétés topologiques, ou différentielles (en dimension 3, ces catégories sont équivalentes). Certains phénomènes sont liés spécifiquement à la dimension 3, si bien qu'en cette dimension, des techniques particulières prévalent, qui ne se généralisent pas aux dimensions supérieures.
Représentation de groupeEn mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Sinus hyperbolique réciproqueLe sinus hyperbolique réciproque est, en mathématiques, une fonction hyperbolique. La fonction sinus hyperbolique réciproque, ou argument sinus hyperbolique, notée arsinh (ou argsh), est définie à l'aide du sinus hyperbolique par : Cette fonction est bijective et son est . Elle est continue, impaire, strictement croissante, convexe sur et concave sur . Sa en 0 est 0 et sa limite en +∞ est +∞. Elle est dérivable sur et sa dérivée est donnée par : Par conséquent : la fonction arsinh s'exprime à l'aide du log
Angle hyperboliquedroite|vignette|200x200px|Une hyperbole est une figure délimitée par deux rayons et un arc d'hyperbole. Le secteur grisé est en position standard si En géométrie, l'angle hyperbolique est un nombre réel déterminé par l'aire du secteur hyperbolique correspondant de xy = 1 dans le quadrant I du plan cartésien. L'angle hyperbolique paramètre l'hyperbole unité, qui a des fonctions hyperboliques comme coordonnées. En mathématiques, l'angle hyperbolique est une mesure invariante car il est conservé par rotation hyperbolique.
Secteur hyperboliquedroite|200x200px En géométrie, un secteur hyperbolique est une région du plan cartésien délimitée par une hyperbole et deux rayons partant de l'origine vers celle-ci. Par exemple, les deux points et sur l'hyperbole équilatère , ou la région correspondante lorsque cette hyperbole est remise à l'échelle et que son orientation est modifiée par une rotation laissant le centre à l'origine, comme avec l'hyperbole unité. Un secteur hyperbolique en position standard part de et . Les secteurs hyperboliques sont à la base des fonctions hyperboliques.
Hyperbolic orthogonalityIn geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity. Two lines are hyperbolic orthogonal when they are reflections of each other over the asymptote of a given hyperbola.
Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).
Métrique de PoincaréEn mathématiques, et plus précisément en géométrie différentielle, la métrique de Poincaré, due à Henri Poincaré, est le tenseur métrique décrivant une surface de courbure négative constante. C'est la métrique naturelle utilisée pour des calculs en géométrie hyperbolique ou sur des surfaces de Riemann.