Factorisation des polynômesEn mathématiques, la factorisation d'un polynôme consiste à écrire celui-ci comme produit de polynômes. Les factorisations intéressantes sont celles permettant d'écrire le polynôme initial en produit de plusieurs polynômes non inversibles. Un polynôme non inversible pour lequel aucune factorisation de ce type n'existe s'appelle un polynôme irréductible. La décomposition d'un polynôme en produits de polynômes irréductibles existe, et a une propriété d'unicité (à un facteur inversible près), pour tout polynôme à coefficients réels ou complexes.
Irrationnel quadratiqueUn irrationnel quadratique est un nombre irrationnel solution d'une équation quadratique à coefficients rationnels, autrement dit, un nombre réel algébrique de degré 2. Il engendre donc un corps quadratique réel Q(), où d est un entier positif sans facteur carré. Les irrationnels quadratiques sont caractérisés par la périodicité à partir d'un certain rang de leur développement en fraction continue (théorème de Lagrange). Les exemples les plus simples d'irrationnels quadratiques sont les racines carrées d'entiers naturels non carrés (le plus célèbre étant ).
Opérateur de HeckeEn mathématiques, en particulier dans la théorie des formes modulaires, un opérateur de Hecke, étudié par Erich Hecke, est un certain type d'opérateur de « moyennage » qui joue un rôle important dans la structure des espaces vectoriels de formes modulaires et de représentations automorphes plus générales. Mordell (1917) a utilisé les opérateurs de Hecke sur les formes modulaires dans un article sur les formes paraboliques spéciales de Ramanujan, bien avant la théorie générale développée par Hecke (1937a, 1937b).
Affine Lie algebraIn mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras.
Fonction êta de DedekindLa fonction êta de Dedekind est une fonction définie sur le demi-plan de Poincaré formé par les nombres complexes de partie imaginaire strictement positive. Pour un tel nombre complexe , on pose et la fonction êta est alors : , en posant . La fonction êta est holomorphe dans le demi-plan supérieur mais n'admet pas de prolongement analytique en dehors de cet ensemble. La fonction êta vérifie les deux équations fonctionnelles et La seconde se généralise : soient des entiers tels que (donc associés à une transformation de Möbius appartenant au groupe modulaire), avec .
Variété de ShimuraEn algèbre, les variétés de Shimura sont des analogues de dimension élevée des courbes modulaires. Ils sont formés comme la variété de quotient d'un espace hermitien symétrique par rapport à un sous-groupe de congruence d'un groupe réductif algébrique (défini sur les nombres rationnels). Les variétés de Shimura portent le nom de Gorō Shimura. Notation: est le groupe multiplicatif (un groupe algébrique), c'est-à-dire est le tore de Deligne, c'est-à-dire le tore algébrique sur , que l'on obtient de sur par la restriction de Weil ().
Théorème des deux carrés de Fermatthumb|Pierre de Fermat (1601-1665). En mathématiques, le théorème des deux carrés de Fermat énonce les conditions pour qu’un nombre entier soit la somme de deux carrés parfaits (c'est-à-dire de deux carrés d’entiers) et précise de combien de façons différentes il peut l’être. Par exemple, selon ce théorème, un nombre premier impair (c'est-à-dire tous les nombres premiers sauf 2) est une somme de deux carrés parfaits si et seulement si le reste de sa division euclidienne par 4 est 1 ; dans ce cas, les carrés sont déterminés de manière unique.