Particule αLes particules alpha (ou rayons alpha) sont une forme de rayonnement émis, principalement, par des noyaux instables de grande masse atomique. Elles sont constituées de deux protons et deux neutrons combinés en une particule identique au noyau d' (hélion) ; elles peuvent donc s'écrire 4He2+. La masse d'une particule alpha est de , ce qui équivaut à une énergie de masse de . Radioactivité α Les particules alpha sont émises par des noyaux radioactifs, comme l'uranium ou le radium, par l'intermédiaire du processus de désintégration alpha.
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Matrice SEn physique, la matrice S ou matrice de diffusion (plus rarement matrice de collision, ou S-matrice) est une construction mathématique qui relie l'état initial et l'état final d'un système physique soumis à un processus de diffusion/collision (). Elle est utilisée en mécanique quantique, en théorie de la diffusion des ondes et des particules, ainsi qu'en théorie quantique des champs. Plus particulièrement, en physique des particules, dans une expérience de collision, des particules sont préparées dans un état initial, puis accélérées afin de subir des collisions à hautes énergies.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
Diffusion ThomsonLa diffusion Thomson est la diffusion d'un photon de faible énergie sur une particule chargée de matière au repos, généralement un électron libre, c'est-à-dire non lié à un atome. La diffusion Thomson est un des deux régimes particuliers de la diffusion Compton plus générale. Cette diffusion a été expliquée par Joseph John Thomson. Cette diffusion (voir Diffusion des particules) s'effectue pour des énergies faibles, le rayonnement électromagnétique est absorbé puis réémis par la particule.
Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Partition function (quantum field theory)In quantum field theory, partition functions are generating functionals for correlation functions, making them key objects of study in the path integral formalism. They are the imaginary time versions of statistical mechanics partition functions, giving rise to a close connection between these two areas of physics. Partition functions can rarely be solved for exactly, although free theories do admit such solutions. Instead, a perturbative approach is usually implemented, this being equivalent to summing over Feynman diagrams.
InstantonEn mécanique quantique et en théorie quantique des champs, un instanton est une solution classique des équations du mouvement c'est-à-dire correspondant à un extremum local de l'action qui définit la théorie, mais pas à un minimum global. Puisque la théorie perturbative considère la plupart du temps un développement en puissance de la constante de couplage de la théorie au voisinage du minimum global de l'action, appelé l'état fondamental, les instantons sont inaccessibles à ce développement et constituent de ce point de vue des phénomènes non-perturbatifs.