Forme modulaireEn mathématiques, une forme modulaire est une fonction analytique sur le demi-plan de Poincaré satisfaisant à une certaine sorte d'équation fonctionnelle et de condition de croissance. La théorie des formes modulaires est par conséquent dans la lignée de l'analyse complexe mais l'importance principale de la théorie tient dans ses connexions avec le théorème de modularité et la théorie des nombres.
Courbe modulaireEn théorie des nombres et en géométrie algébrique une courbe modulaire désigne la surface de Riemann, ou la courbe algébrique correspondante, construite comme quotient du demi-plan de Poincaré H sous l'action de certains sous-groupes Γ d'indice fini dans le groupe modulaire. La courbe obtenue est généralement notée Y(Γ). On appelle Γ le niveau de la courbe Y(Γ). Depuis Gorō Shimura, on sait que ces courbes admettent des équations à coefficients dans un corps cyclotomique, qui dépend du niveau Γ.
Groupe modulaireEn mathématiques, on appelle groupe modulaire le groupe PSL(2, Z), quotient du groupe spécial linéaire SL(2, Z) par son centre { Id, –Id }. Il s'identifie à l'image de SL(2, Z) dans le groupe de Lie On le note souvent Γ(1) ou simplement Γ. Ce nom provient de l'action à gauche et fidèle de Γ(1) par homographies sur le demi-plan de Poincaré H des nombres complexes de partie imaginaire strictement positive. Cette action n'est que la restriction de l'action de PGL(2, C) sur la droite projective complexe P(C) = C ∪ {∞} : la matrice agit sur P(C) par la transformation de Möbius qui en envoie z sur .
Siegel modular formIn mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional elliptic modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular forms are Siegel modular varieties, which are basic models for what a moduli space for abelian varieties (with some extra level structure) should be and are constructed as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.
Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Conjecture de RamanujanEn mathématiques, la conjecture de Ramanujan, due à Srinivasa Ramanujan (et démontrée par Pierre Deligne en 1973), prédit certaines propriétés arithmétiques ainsi que le comportement asymptotique de la fonction tau qu'il a définie. La conjecture de Ramanujan généralisée, ou conjecture de Ramanujan-Petersson, introduite par Hans Petersson en 1930, en est une généralisation à d'autres formes modulaires ou automorphes.
Classical modular curveIn number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation Φn(x, y) = 0, such that (x, y) = (j(nτ), j(τ)) is a point on the curve. Here j(τ) denotes the j-invariant. The curve is sometimes called X0(n), though often that notation is used for the abstract algebraic curve for which there exist various models. A related object is the classical modular polynomial, a polynomial in one variable defined as Φn(x, x).
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Théorème de modularitéLe théorème de modularité (auparavant appelé conjecture de Taniyama-Weil ou conjecture de Shimura-Taniyama-Weil ou conjecture de Shimura-Taniyama) énonce que, pour toute courbe elliptique sur Q, il existe une forme modulaire de poids 2 pour un Γ(N), ayant même fonction L que la courbe elliptique. Une grande partie de ce résultat, suffisante pour en déduire le dernier théorème de Fermat, a été démontrée par Andrew Wiles. S'inspirant de ses techniques, Christophe Breuil, Brian Conrad, Fred Diamond et Richard Taylor ont traité les cas restants en 1999.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.