Complex torusIn mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way.
Multiplication complexeEn mathématiques, une courbe elliptique est à multiplication complexe si l'anneau de ses endomorphismes est plus grand que celui des entiers (il existe une théorie plus générale de la multiplication complexe pour les variétés abéliennes de dimension supérieure). Cette notion est liée au douzième problème de Hilbert. Un exemple de courbe elliptique avec multiplication complexe est C/Z[i]θ où Z[i] est l'anneau des entiers de Gauss, et θ est n'importe quel nombre complexe différent de zéro.
Série formelleEn algèbre, les séries formelles sont une généralisation des polynômes autorisant des sommes infinies, de la même façon qu'en analyse, les séries entières généralisent les fonctions polynomiales, à ceci près que dans le cadre algébrique, les problèmes de convergence sont évités par des définitions ad hoc. Ces objets sont utiles pour décrire de façon concise des suites et pour trouver des formules pour des suites définies par récurrence via ce que l'on appelle les séries génératrices. Soit R un anneau commutatif (unifère).
Hyperbolic orthogonalityIn geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity. Two lines are hyperbolic orthogonal when they are reflections of each other over the asymptote of a given hyperbola.
11 (nombre)Le nombre 11 (onze) est l’entier naturel qui suit 10 et qui précède 12. Le nombre 11 est : le cinquième nombre premier et, en , le plus petit nombre premier à deux chiffres ; le cinquième nombre premier supersingulier (sur quinze en tout) ; le cinquième nombre premier de Chen (tout nombre premier supersingulier est un nombre premier de Chen) le troisième nombre premier sûr de la forme avec n premier : 2 × 5 + 1 ; le quatrième nombre premier de Sophie Germain (nombre premier n tel que 2n + 1 est premier) : en effet (2 × 11) + 1 = 23 est premier ; un nombre premier unique ; le quatrième nombre premier non brésilien bien qu'il soit répunit 11 = 1110, mais par convention l'écriture n = 11n–1 est proscrite, sinon, tout nombre serait alors brésilien.
5 (nombre)5 (cinq) est l'entier naturel qui suit 4 et qui précède 6. Le nombre cinq correspond au nombre normal de doigts d'une main ou d'un pied humains. Le préfixe du Système international pour (10) est péta (P), et pour son inverse, 10, femto (f). La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre cinq. Cinq (chiffre) Le chiffre « cinq », symbolisé « 5 », est le chiffre arabe servant notamment à signifier le nombre cinq.
9 (nombre)9 (neuf) est l'entier naturel qui suit 8 et qui précède 10. C'est le plus haut nombre à un chiffre dans le système décimal. Un groupe de neuf choses est appelé une ennéade. L'action de multiplier par neuf s'appelle nonupler. Neuf est un nombre impair et un nombre composé, ses diviseurs stricts sont 1 et 3. C'est un carré parfait, le quatrième nombre puissant et un nombre cubique centré. 9 est le troisième nombre carré non brésilien. 9 est la somme des factorielles des trois premiers entiers non nuls (1! + 2! + 3! = 9).