Champ (physique)En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
ZielA goal or objective is an idea of the future or desired result that a person or a group of people envision, plan and commit to achieve. People endeavour to reach goals within a finite time by setting deadlines. A goal is roughly similar to a purpose or aim, the anticipated result which guides reaction, or an end, which is an object, either a physical object or an abstract object, that has intrinsic value. Goal setting Goal-setting theory was formulated based on empirical research and has been called one of the most important theories in organizational psychology.
Champ électromagnétiqueUn champ électromagnétique ou Champ EM (en anglais, electromagnetic field ou EMF) est la représentation dans l'espace de la force électromagnétique qu'exercent des particules chargées. Concept important de l'électromagnétisme, ce champ représente l'ensemble des composantes de la force électromagnétique s'appliquant sur une particule chargée se déplaçant dans un référentiel galiléen. Une particule de charge q et de vecteur vitesse subit une force qui s'exprime par : où est le champ électrique et est le champ magnétique.
CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).
Champ électriquethumb|Champ électrique associé à son propagateur qu'est le photon. right|thumb|Michael Faraday introduisit la notion de champ électrique. En physique, le champ électrique est le champ vectoriel créé par des particules électriquement chargées. Plus précisément, des particules chargées modifient les propriétés locales de l'espace, ce que traduit justement la notion de champ. Si une autre charge se trouve dans ce champ, elle subira l'action de la force électrique exercée à distance par la particule : le champ électrique est en quelque sorte le "médiateur" de cette action à distance.