Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Simple random sampleIn statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way. In SRS, each subset of k individuals has the same probability of being chosen for the sample as any other subset of k individuals. A simple random sample is an unbiased sampling technique. Simple random sampling is a basic type of sampling and can be a component of other more complex sampling methods.
Géométrie algébriqueLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
Géométrie des transformationsEn mathématiques, la géométrie des transformations correspond à l'étude géométrique centrée sur les groupes de transformations géométriques et à leurs propriétés, indépendamment des figures, considérées invariantes. Elle s'oppose de façon claire à la géométrie euclidienne, qui se concentre sur la construction géométrique. Par exemple, dans la géométrie des transformations, les propriétés d'un triangle isocèle sont déduites des symétries internes autour des droites géométriques particulières (hauteurs, bissectrices, médiatrices).
Univers (probabilités)vignette|Lancé d'une pièce (pile ou face) En théorie des probabilités, un univers, souvent noté , ou , est l'ensemble de toutes les issues (résultats) pouvant être obtenues au cours d'une expérience aléatoire. À chaque élément de l'univers , c'est-à-dire à chacun des résultats possibles de l'expérience considérée, nous pouvons associer le sous-ensemble constitué de cet élément, appelé événement élémentaire. De manière plus générale, toute partie de l'univers est appelée un événement.
Systematic samplingIn survey methodology, systematic sampling is a statistical method involving the selection of elements from an ordered sampling frame. The most common form of systematic sampling is an equiprobability method. In this approach, progression through the list is treated circularly, with a return to the top once the list ends. The sampling starts by selecting an element from the list at random and then every kth element in the frame is selected, where k, is the sampling interval (sometimes known as the skip): this is calculated as: where n is the sample size, and N is the population size.
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.
Événement élémentaireEn théorie des probabilités, on appelle événement élémentaire un ensemble de l'univers (un évènement) constitué d'un seul élément. Par exemple dans un jeu de carte classique de 52 cartes, tirer le roi de cœur est un événement élémentaire car le paquet de carte ne contient qu'un seul roi de cœur. Supposons qu'une tribu contienne tous les événements élémentaires ; elle contient alors toutes les parties finies ou dénombrables de , et chacune de ces parties peut s'écrire sous la forme : La réunion étant disjointe, cette relation permet de déterminer la probabilité de tout événement à partir des probabilités des événements élémentaires constituant .
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.