Interpolation au plus proche voisinLinterpolation au plus proche voisin (ou interpolation arrondie) est une méthode simple d'interpolation numérique d'un ensemble de points en dimension 1 ou supérieure (interpolation multivariée). Le problème de l'interpolation consiste à calculer une valeur approchée d'une fonction en un point quelconque à partir des valeurs de la fonction données en des points définis. L'algorithme du plus proche voisin détermine la valeur recherchée comme étant égale à la valeur au point le plus proche, sans considérer les autres valeurs connues, construisant ainsi une fonction constante par morceaux.
Interpolation bilinéaireL'interpolation bilinéaire est une méthode d'interpolation pour les fonctions de deux variables sur une grille régulière. Elle permet de calculer la valeur d'une fonction en un point quelconque, à partir de ses deux plus proches voisins dans chaque direction. C'est une méthode très utilisée en pour le , qui permet d'obtenir de meilleurs résultats que l'interpolation par plus proche voisin, tout en restant de complexité raisonnable.
Diagonale principaleEn algèbre linéaire, la diagonale principale d'une matrice carrée est la diagonale qui descend du coin en haut à gauche jusqu'au coin en bas à droite. Par exemple, la matrice carrée d'ordre 3 qui suit a des 1 sur sa diagonale principale : Il s'agit en particulier de la matrice identité d'ordre 3. Ici, la diagonale principale est composée de 1 et on a également 2 diagonales « secondaires » de part et d'autre de la diagonale principale, composées par des 2 et l'autre par des 3.
Trigonometric interpolationIn mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation of periodic functions. An important special case is when the given data points are equally spaced, in which case the solution is given by the discrete Fourier transform.
Infinitesimal strain theoryIn continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness) at each point of space can be assumed to be unchanged by the deformation.
Quaternionvignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
Produit matriciel de Hadamardvignette|Illustration du produit de Hadamard: il s'applique à deux matrices de mêmes dimensions et la matrice en resultant a les mêmes dimensions également. En mathématiques, le produit matriciel de Hadamard, nommé d'après le mathématicien français Jacques Hadamard et parfois désigné produit de Schur, est une opération binaire qui pour deux matrices de mêmes dimensions, associe une autre matrice, de même dimension, et où chaque coefficient est le produit terme à terme des deux matrices.
Infinitesimal rotation matrixAn infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation. While a rotation matrix is an orthogonal matrix representing an element of (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.
Décomposition LUEn algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.
Décomposition polaireLa décomposition polaire est un outil mathématique fondamental pour comprendre les propriétés topologiques des groupes linéaires réels et complexes. Les applications suivantes sont des homéomorphismes, et même des difféomorphismes. En particulier, toute matrice inversible réelle se décompose de façon unique en produit d'une matrice orthogonale et d'une matrice symétrique définie positive. Les applications suivantes sont surjectives mais non injectives : En particulier, toute matrice réelle se décompose en produit d'une matrice orthogonale et d'une unique matrice symétrique positive (mais pas nécessairement de façon unique).