Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Topologie étaleUne topologie étale est l'exemple le plus important d'une topologie de Grothendieck sur les schémas. Généralisant la topologie euclidienne, elle est définie en caractéristique positive et permet d'introduire une théorie cohomologique sur ces objets : la cohomologie étale. Une catégorie munie d'une telle topologie forme alors un site appelé site étale, et il existe une théorie des faisceaux étales, qui donne le premier exemplaire historique d'un topos : le topos étale.
Géométrie affinevignette|Géometrie affine La géométrie affine est la géométrie des espaces affines : il s'agit grossièrement d'ensembles de points définis par des propriétés spécifiques permettant de parler d'alignement, de parallélisme, d'intersection. Les notions de longueur et d'angle lui sont toutefois étrangères : elles dépendent de structures supplémentaires, traitées dans le cadre de la géométrie euclidienne. Dissocier les notions propres à la géométrie affine est récent dans l'histoire des mathématiques.
Groupe cycliqueEn mathématiques et plus précisément en théorie des groupes, un groupe cyclique est un groupe qui est à la fois fini et monogène, c'est-à-dire qu'il existe un élément a du groupe tel que tout élément du groupe puisse s'exprimer sous forme d'un multiple de a (en notation additive, ou comme puissance en notation multiplicative) ; cet élément a est appelé générateur du groupe. Il n'existe, à isomorphisme près, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient Z/nZ — également noté Z ou C — de Z par le sous-groupe des multiples de n.
HypersurfaceEn géométrie, une hypersurface est une généralisation du concept d'hyperplan, de courbe plane et de surface. Une hypersurface est une variété de dimension N - 1, qui est intégrée dans un espace de dimension N, généralement un espace euclidien ou un espace affine. Dans une espace de dimension 3, une hypersurface est une surface Dans une espace de dimension 2, une hypersurface est une ligne Une hypersurface est souvent définie par une seule équation du type f(x1,x2,...xN)=0.
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).
Champ (physique)En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.