Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Régression vers la moyenneEn statistique, la régression vers la moyenne décrit le phénomène suivant : si une variable est extrême à sa première mesure, elle va généralement se rapprocher de la moyenne à sa seconde mesure. Si elle est extrême à sa seconde mesure elle va tendre à être proche de la moyenne à sa première mesure. Afin d'éviter des inférences erronées, la régression vers la moyenne doit être considérée à la base de la conception des expériences scientifiques et prise en compte lors de l'interprétation des données.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Transportation forecastingTransportation forecasting is the attempt of estimating the number of vehicles or people that will use a specific transportation facility in the future. For instance, a forecast may estimate the number of vehicles on a planned road or bridge, the ridership on a railway line, the number of passengers visiting an airport, or the number of ships calling on a seaport. Traffic forecasting begins with the collection of data on current traffic. This traffic data is combined with other known data, such as population, employment, trip rates, travel costs, etc.
Régression non paramétriqueLa régression non paramétrique est une forme d'analyse de la régression dans lequel le prédicteur, ou fonction d'estimation, ne prend pas de forme prédéterminée, mais est construit selon les informations provenant des données. La régression non paramétrique exige des tailles d'échantillons plus importantes que celles de la régression basée sur des modèles paramétriques parce que les données doivent fournir la structure du modèle ainsi que les estimations du modèle. On dispose de données numériques que l'on suppose corrélées.
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Intervalle unitéEn mathématique, l'intervalle unité est l'intervalle fermé [0,1], c'est-à-dire, l'ensemble de tous les nombres réels qui sont supérieurs ou égaux à 0 et inférieurs ou égaux à 1. Il est souvent noté I. Dans la littérature, le terme "intervalle unité" est parfois appliqué à d'autres intervalles : (0,1], [0,1), et (0,1). Cependant, la notation I est généralement réservée à l'intervalle fermé [0,1]. L'intervalle unité est un espace métrique complet.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Théorie du transportEn mathématiques et en économie, la théorie du transport est le nom donné à l'étude du transfert optimal de matière et à l'allocation optimale de ressources. Le problème a été formalisé par le mathématicien français Gaspard Monge en 1781. D'importants développements ont été réalisés dans ce domaine pendant la Seconde Guerre mondiale par le mathématicien et économiste russe Léonid Kantorovitch. Par conséquent, le problème dans sa forme actuelle est parfois baptisé problème (du transport) de Monge-Kantorovitch.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).