Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Value at riskLa VaR (de l'anglais value at risk, mot à mot : « valeur à risque », ou « valeur en jeu ») est une notion utilisée généralement pour mesurer le risque de marché d'un portefeuille d'instruments financiers. Elle correspond au montant de pertes qui ne devrait être dépassé qu'avec une probabilité donnée sur un horizon temporel donné. L'utilisation de la VaR n'est désormais plus limitée aux instruments financiers : on peut en faire un outil de gestion des risques dans tous les domaines (, par exemple).
Bootstrap (statistiques)En statistiques, les techniques de bootstrap sont des méthodes d'inférence statistique basées sur la réplication multiple des données à partir du jeu de données étudié, selon les techniques de rééchantillonnage. Elles datent de la fin des années 1970, époque où la possibilité de calculs informatiques intensifs devient abordable. On calculait depuis près d'un siècle des estimations : mesures de dispersion (variance, écart-type), intervalles de confiance, tables de décision pour des tests d'hypothèse, etc.
Statistique (indicateur)Une statistique est, au premier abord, le résultat d'une suite d'opérations appliquées à un ensemble de nombres appelé échantillon. D'une façon générale, c'est le résultat de l'application d'une méthode statistique à un ensemble de données. Dans le calcul de la moyenne arithmétique, par exemple, l'algorithme consiste à calculer la somme de toutes les valeurs des données et à diviser par le nombre de données. La moyenne est ainsi une statistique.
UnimodalityIn mathematics, unimodality means possessing a unique mode. More generally, unimodality means there is only a single highest value, somehow defined, of some mathematical object. In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak. The term "mode" in this context refers to any peak of the distribution, not just to the strict definition of mode which is usual in statistics. If there is a single mode, the distribution function is called "unimodal".
Médiane (statistiques)En théorie des probabilités et en statistiques, la médiane est une valeur qui sépare la moitié inférieure et la moitié supérieure des termes d’une série statistique quantitative ou d’une variable aléatoire réelle. On peut la définir aussi pour une variable ordinale. La médiane est un indicateur de tendance centrale. Par comparaison avec la moyenne, elle est insensible aux valeurs extrêmes mais son calcul est un petit peu plus complexe. En particulier, elle ne peut s’obtenir à partir des médianes de sous-groupes.
Puissance statistiqueLa puissance statistique d'un test est en statistique la probabilité de rejeter l'hypothèse nulle (par exemple l'hypothèse selon laquelle les groupes sont identiques au regard d'une variable) sachant que l'hypothèse nulle est incorrecte (en réalité les groupes sont différents). On peut l'exprimer sous la forme 1-β où β est le risque de c'est-à-dire le risque de ne pas démontrer que deux groupes sont différents alors qu'ils le sont dans la réalité.
Entropic value at riskIn financial mathematics and stochastic optimization, the concept of risk measure is used to quantify the risk involved in a random outcome or risk position. Many risk measures have hitherto been proposed, each having certain characteristics. The entropic value at risk (EVaR) is a coherent risk measure introduced by Ahmadi-Javid, which is an upper bound for the value at risk (VaR) and the conditional value at risk (CVaR), obtained from the Chernoff inequality. The EVaR can also be represented by using the concept of relative entropy.
Loi des grands nombresvignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités.
KurtosisEn théorie des probabilités et en statistique, le kurtosis (du nom féminin grec ancien κύρτωσις, « courbure »), aussi traduit par coefficient d’acuité, coefficient d’aplatissement et degré de voussure, est une mesure directe de l’acuité et une mesure indirecte de l'aplatissement de la distribution d’une variable aléatoire réelle. Il existe plusieurs mesures de l'acuité et le kurtosis correspond à la méthode de Pearson. C’est le deuxième des paramètres de forme, avec le coefficient d'asymétrie (les paramètres fondés sur les moments d’ordre 5 et plus n’ont pas de nom propre).