Différence finieEn mathématiques, et plus précisément en analyse, une différence finie est une expression de la forme f(x + b) − f(x + a) (où f est une fonction numérique) ; la même expression divisée par b − a s'appelle un taux d'accroissement (ou taux de variation), et il est possible, plus généralement, de définir de même des différences divisées. L'approximation des dérivées par des différences finies joue un rôle central dans les méthodes des différences finies utilisées pour la résolution numérique des équations différentielles, tout particulièrement pour les problèmes de conditions aux limites.
Auto-organisationL'auto-organisation ou autoorganisation est un phénomène par lequel un système s'organise lui-même. Les systèmes physiques, biologiques ou écologiques, sociaux, ont tendance à s'organiser d'eux-mêmes. Il s'agit soit de l'organisation initiale du système lors de son émergence spontanée, soit lorsque le système existe déjà de l'apparition d'une organisation plus ou complexe. L'auto-organisation agit ainsi à l'encontre de l'entropie (on parle alors de néguentropie), qui est une mesure de désordre.
Ensemble finiEn mathématiques, un ensemble fini est un ensemble qui possède un nombre fini d'éléments, c'est-à-dire qu'il est possible de compter ses éléments, le résultat étant un nombre entier. Un ensemble infini est un ensemble qui n'est pas fini. Ainsi l'ensemble des chiffres usuels (en base dix) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} qui possède 10 éléments, est fini. De même l'ensemble des lettres de l'alphabet qui possède 26 éléments. L'ensemble de tous les nombres entiers naturels {0, 1, 2, 3,..., 10,..., 100,...
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Sécurité énergétiquevignette| Un Boeing F/A-18 Super Hornet de l'US Navy affichant un logo "Energy Security". La sécurité énergétique est l'association entre la sécurité nationale et la disponibilité des ressources naturelles pour la consommation d'énergie. L'accès à une énergie (relativement) bon marché est devenu essentiel au fonctionnement des économies modernes. Cependant, la répartition inégale des approvisionnements énergétiques entre les pays conduit à des vulnérabilités importantes.
Politique énergétiqueLa politique énergétique est la politique adoptée par une entité vis-à-vis de la gestion de l'énergie. Elle a notamment une dimension géopolitique. Académies suisses des sciences, « Instruments pour une politique climatique et énergétique efficace », fiche d'information, 2019. Agence internationale de l'énergie Certificat économie énergie Dépendance au pétrole Direction générale de l'énergie et des matières premières Politique climatique Politique énergétique de l'Union européenne Politiques publiques de rénovation énergétique Sécurité énergétique Les invariants de l'énergie, conférence de Samuele Furfari sur la consommation d'énergie par l'homme (dépendance, ressources et contexte géopolitique).
Ordre (théorie des groupes)En théorie des groupes, une branche des mathématiques, le terme ordre est utilisé dans deux sens intimement liés : L'ordre d'un groupe est le cardinal de son ensemble sous-jacent. Le groupe est dit fini ou infini suivant que son ordre est fini ou infini. Si un élément a d'un groupe G engendre dans G un sous-groupe (monogène) fini d'ordre d, on dit que a est d'ordre fini et, plus précisément, d'ordre d. Si le sous-groupe engendré par a est infini, on dit que a est d'ordre infini.
Karl PopperKarl Popper, né le à Vienne en Autriche et mort le à Londres (Croydon) au Royaume-Uni, est un enseignant et philosophe des sciences du , autrichien naturalisé britannique. Penseur anticonformiste, il a invité à la réflexion, au dialogue et à la confrontation des idées dans toutes ses œuvres. Il est célèbre pour ses positions épistémologiques, mais il a su porter un regard nouveau en politique et dans les sciences sociales. Il a collaboré à de hautes discussions avec les plus grands scientifiques de son époque.
Groupe de renormalisationEn physique statistique, le groupe de renormalisation est un ensemble de transformations qui permettent de transformer un hamiltonien en un autre hamiltonien par élimination de degrés de liberté tout en laissant la fonction de partition invariante. Il s'agit plus exactement d'un semi-groupe, les transformations n'étant pas inversibles. Le groupe de renormalisation permet de calculer les exposants critiques d'une transition de phase. Il permet aussi de prédire la transition Berezinsky-Kosterlitz-Thouless.
FermionEn physique des particules, un fermion (nom attribué par Paul Dirac d'après Enrico Fermi) est une particule de spin demi-entier (c'est-à-dire 1/2, 3/2, 5/2...). Elle obéit à la statistique de Fermi-Dirac. Un fermion peut être une particule élémentaire, tel l'électron, ou une particule composite, tel le proton, ou toutes leurs antiparticules. Toutes les particules élémentaires observées sont soit des fermions, soit des bosons (l'hypothétique matière noire, encore non observée en , n'est actuellement pas catégorisée).