Outilthumb|Une boîte à outils en bois des années 1950. Un outil est un objet physique utilisé par un être vivant directement, ou par l'intermédiaire d'une machine, afin d'exercer une action le plus souvent mécanique, ou thermique, sur un élément d'environnement à traiter (matière brute, objet fini ou semi-fini, être vivant, etc). Il améliore l'efficacité des actions entreprises ou donne accès à des actions impossibles autrement. Beaucoup procurent un avantage mécanique en fonctionnant selon le principe d'une machine simple, comme la pince-monseigneur, qui exploite le principe du levier.
Complexité des preuvesEn informatique théorique, la complexité des preuves ou complexité des démonstrations est le domaine qui étudie les ressources nécessaires pour prouver ou réfuter un énoncé mathématique. Le démarche classique du domaine est de fixer une sorte de preuve, puis de montrer des bornes sur la longueur des preuves pour certains énoncés. La sorte de preuve peut être d'origine logique, comme la déduction naturelle, le calcul des séquents, des systèmes basés sur la règle de résolution, ou plus combinatoire, comme l'algorithme DPLL et la méthode des plans sécants.
Démonstration constructiveUne première vision d'une démonstration constructive est celle d'une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c'est-à-dire qui ne fait pas appel à l'infini, ni au principe du tiers exclu. Ainsi, démontrer l'impossibilité de l'inexistence d'un objet ne constitue pas une démonstration constructive de son existence : il faut pour cela en exhiber un et expliquer comment le construire. Si une démonstration est constructive, on doit pouvoir lui associer un algorithme.
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
Mathématiquesthumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Calcul infinitésimalLe calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : Le calcul différentiel, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivée. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune, les taux de variation, l'optimisation et les taux liés.
Philosophie des mathématiquesLa philosophie des mathématiques est la branche de la philosophie des sciences qui tente de répondre aux interrogations sur les fondements des mathématiques ainsi que sur leur usage. On y croise des questions telles que : « les mathématiques sont-elles nécessaires ? », « pourquoi les mathématiques sont-elles utiles ou efficaces pour décrire la nature ? », « dans quel(s) sens, peut-on dire que les entités mathématiques existent ? » ou « pourquoi et comment peut-on dire qu'une proposition mathématique est vraie ? ».
Liste des outils de jardinagevignette|Représentation de plusieurs outils La pratique du jardinage repose sur des savoir-faire et des outils. Utiliser le bon outil pour la bonne tâche. On peut différencier les outils selon leur utilisation : préparation des sols avant plantation ou semis : par exemple motoculteur, fourche, bêche. préparation et entretien des sols déjà plantés ou semés, par exemple : tondeuse à gazon, arrosoir. outils d'élagage, coupe ou suppression : par exemple : tronçonneuse, scie, sécateur, taille-haie.
Outil à mainUn outil à main est un outil qui est actionné à la main plutôt qu' à l'aide d'un moteur. Catégories d'outils à main comprennent des clés, pinces, cutter, outils de frappe, ciseaux, tournevis, étaux, serre-joint, cisailles, scies, perceuses et couteaux. Les outils d'extérieur tels que les fourches, les sécateurs et les râteaux sont aussi des outils à main. Les outils électroportatifs ne sont pas considérés comme des outils à main. Les outils à main sont utilisés par les humains depuis l'âge de pierre, où les pierres étaient utilisées pour couper et frapper.