Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Interprétation de la mécanique quantiqueUne interprétation de la mécanique quantique est une tentative d'explication de la façon dont la théorie mathématique de la mécanique quantique « correspond » à la réalité. Bien que la mécanique quantique ait fait l'objet de démonstrations rigoureuses dans une gamme extraordinairement large d'expériences (aucune prédiction de la mécanique quantique n'a été contredite par l'expérience), il existe un certain nombre d'écoles de pensée concurrentes sur son interprétation.
Nombre quantique principalvignette|Modèle de Bohr illustrant les niveaux d'énergie d'un atome. En mécanique quantique, le nombre quantique principal, noté n, est l'un des quatre nombres quantiques décrivant l'état quantique des électrons dans les atomes. Il s'agit d'un nombre entier non nul, c'est-à-dire vérifiant . Chaque nombre n est associé à une couche électronique dans l'atome : couche K pour , couche L pour , couche M pour La distance moyenne de l'électron au noyau atomique croît en fonction de n : la couche K est ainsi la plus profonde dans l'atome, et les autres couches s'organisent de manière concentrique autour du noyau.
Action (physique)L’action est une grandeur fondamentale de la physique théorique, ayant la dimension d'une énergie multipliée par une durée, ou d'une quantité de mouvement multipliée par une distance. Elle est notée habituellement et plus rarement . Cette grandeur a été définie par Leibniz en 1690. Elle s'est avérée d'une grande importance lors de la mise en évidence du principe de moindre action par Maupertuis en 1744, et plus tard lors de la découverte par Planck en 1900 de la constante universelle qui porte son nom, nommée par lui « quantum élémentaire d'action ».
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Hadamard's dynamical systemIn physics and mathematics, the Hadamard dynamical system (also called Hadamard's billiard or the Hadamard–Gutzwiller model) is a chaotic dynamical system, a type of dynamical billiards. Introduced by Jacques Hadamard in 1898, and studied by Martin Gutzwiller in the 1980s, it is the first dynamical system to be proven chaotic. The system considers the motion of a free (frictionless) particle on the Bolza surface, i.e, a two-dimensional surface of genus two (a donut with two holes) and constant negative curvature; this is a compact Riemann surface.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Opérateur hamiltonienL’opérateur de Hamilton, opérateur hamiltonien ou tout simplement hamiltonien est un opérateur mathématique possédant de nombreuses applications dans divers domaines de la physique. D'après Jérôme Pérez, l'opérateur hamiltonien a été développé en 1811 par Joseph-Louis Lagrange alors qu'Hamilton n'avait que 6 ans. Lagrange a explicitement écrit : formule dans laquelle faisait référence à Christiaan Huygens et qu'il aurait appelé Huygensien.