Résumé
L’action est une grandeur fondamentale de la physique théorique, ayant la dimension d'une énergie multipliée par une durée, ou d'une quantité de mouvement multipliée par une distance. Elle est notée habituellement et plus rarement . Cette grandeur a été définie par Leibniz en 1690. Elle s'est avérée d'une grande importance lors de la mise en évidence du principe de moindre action par Maupertuis en 1744, et plus tard lors de la découverte par Planck en 1900 de la constante universelle qui porte son nom, nommée par lui « quantum élémentaire d'action ». À la différence de l'énergie, qui est relative à la vitesse, l'action est une unité universelle et un invariant relativiste. Caractérisant globalement l'état d'un système et son évolution, c'est une grandeur fonctionnelle, qui prend en argument la trajectoire du système et la décrit globalement par un scalaire. L'évolution du système obéit au principe de moindre action, ce qui permet de déterminer en chaque point de la trajectoire l'équation du mouvement gouvernant le futur de ce système. Le moment cinétique a la même dimension qu'une action, mais il s'agit d'une grandeur vectorielle. Il y a plusieurs manières usuelles de définir l'action en physique. L'action est généralement une intégrale par rapport au temps, mais elle peut également comprendre des intégrations par rapport à des grandeurs spatiales. Dans certains cas, l'intégration se fait sur la trajectoire suivie par le système. Ainsi, l'action s'exprime mathématiquement comme l'intégrale par rapport au temps entre un temps initial et le temps d'observation du système d'une quantité L appelée le lagrangien de ce système, qui est la différence entre l’énergie cinétique T et l’énergie potentielle U : avec L'action a donc la dimension d'une énergie multipliée par une durée, ou, ce qui revient au même, d'une quantité de mouvement multipliée par une distance. L'action est une grandeur physique qui ne se mesure pas ; elle n'intervient que comme auxiliaire de modélisation en physique théorique, pour déterminer la forme mathématique de l'équation du mouvement.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.