Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Application de PoincaréEn mathématiques, particulièrement en système dynamique, une application de Poincaré, nommée en l'honneur de Henri Poincaré, est une application liée à une dans l'espace d'états d'un système dynamique et un certain sous-espace de dimension moindre, appelé la section de Poincaré, transverse au flot du système. Plus précisément, on considère une orbite suffisamment proche d'une orbite périodique, avec une condition initiale sur la section de Poincaré, et on observe le point auquel cette orbite revient à la section pour la première fois, d'où ses autres noms, application de premier retour ou application de récurrence.
Fonction itéréeEn mathématiques, une fonction itérée est une fonction obtenue par composition répétée d’une autre fonction avec elle-même un certain nombre de fois. La procédure consistant à appliquer la même fonction à plusieurs reprises s’appelle itération. Les fonctions itérées apparaissent en informatique, dans les systèmes dynamiques, les groupes de renormalisation et sont à la base des fractales. L’itérée, plus précisément la deuxième itérée, d’une fonction f , définie sur un ensemble X et à valeurs dans ce même ensemble X, est la fonction où note la composition de fonctions.
Théorie des catastrophesDans le domaine de la topologie différentielle, la théorie des catastrophes, fondée par René Thom, est une branche de la théorie des bifurcations qui a pour but de construire le modèle dynamique continu le plus simple pouvant engendrer une morphologie, donnée empiriquement, ou un ensemble de phénomènes discontinus. Plus précisément, il s'agit d'étudier qualitativement comment les solutions d'équations dépendent du nombre de paramètres qu'elles contiennent. Le terme de « catastrophe » désigne le lieu où une fonction change brusquement de forme.
Ingénierie des systèmesL'ingénierie des systèmes ou ingénierie système est une approche scientifique interdisciplinaire, dont le but est de formaliser et d'appréhender la conception et la validation de systèmes complexes. L'ingénierie des systèmes a pour objectif de maîtriser et de contrôler la conception de systèmes dont la complexité ne permet pas le pilotage simple. Par système, on entend un ensemble d'éléments humains ou matériels en interdépendance les uns les autres et qui inter-opèrent à l'intérieur de frontières ouvertes ou non sur l'environnement.
Thermodynamique hors équilibreLa thermodynamique hors équilibre est le domaine de recherche étudiant les phénomènes de relaxation et de transport au voisinage de l'équilibre thermodynamique. Il s'agit là de phénomènes dissipatifs donc irréversibles, liés à une augmentation de l'entropie. Les méthodes présentées ici relèvent de la thermodynamique proprement dite, qui permet de donner les lois caractérisant un phénomène.
Thermodynamic databases for pure substancesThermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa (1 atm), or 100 kPa (1 bar). Both of these definitions for the standard condition for pressure are in use.
Biologie des systèmesLa biologie des systèmes (ou biologie intégrative) est un domaine récent de la biologie qui étudie les organismes vivants comme les systèmes qu'ils sont en réalité, par opposition aux approches historiques qui tendent à décomposer l'étude à tous les niveaux, en biologie, physiologie, biochimie... La biologie systémique cherche à intégrer différents niveaux d'informations pour comprendre comment fonctionne réellement un système biologique.
Système de systèmesUn système de systèmes est un système constitué de systèmes constituants hétérogènes. Un système de système a des capacités plus grandes que la somme des fonctions de ses systèmes constituants. Un système de système se caractérise par: Une indépendance opérationnelle de ses systèmes constituants Une indépendance managériale de ses systèmes Une distribution géographique marquée de ses systèmes constituants Un processus de développement incrémental La présence de comportements émergeant Un système de contrôle
Phase géométriqueEn mécanique quantique, une phase géométrique est un nombre complexe de module unité par lequel est multiplié le vecteur d'état (ou la fonction d'onde) d'un système physique dont on a fait varier un paramètre de façon « adiabatique » selon un circuit fermé (dans l'espace des paramètres). La phase de -Berry est un exemple de telle phase géométrique. Un phénomène analogue existe en optique classique pour la polarisation de la lumière. Fonction d'onde Espace fibré Holonomie Michael V.