Optique non linéaireLorsqu'un milieu matériel est mis en présence d'un champ électrique , il est susceptible de modifier ce champ en créant une polarisation . Cette réponse du matériau à l'excitation peut dépendre du champ de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.
Système de fonctions itéréesvignette|Attracteur de deux similitudes et . En mathématiques, un système de fonctions itérées (SFI ou encore IFS, acronyme du terme anglais Iterated Function System) est un outil pour construire des fractales. Plus précisément, l'attracteur d'un système de fonctions itérées est une forme fractale autosimilaire faite de la réunion de copies d'elle-même, chaque copie étant obtenue en transformant l'une d'elles par une fonction du système. La théorie a été formulée lors d'un séjour à l'université de Princeton par John Hutchinson en 1980.
Adiabatic accessibilityAdiabatic accessibility denotes a certain relation between two equilibrium states of a thermodynamic system (or of different such systems). The concept was coined by Constantin Carathéodory in 1909 ("adiabatische Erreichbarkeit") and taken up 90 years later by Elliott Lieb and J. Yngvason in their axiomatic approach to the foundations of thermodynamics. It was also used by R. Giles in his 1964 monograph. A system in a state Y is said to be adiabatically accessible from a state X if X can be transformed into Y without the system suffering transfer of energy as heat or transfer of matter.
Deterministic systemIn mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly.
Soft systems methodologySoft systems methodology (SSM) is an organised way of thinking that's applicable to problematic social situations and in the management of change by using action. It was developed in England by academics at the Lancaster Systems Department on the basis of a ten-year action research programme. The Soft Systems Methodology was developed primarily by Peter Checkland, through 10 years of research with his colleagues, such as Brian Wilson.
Poincaré complexIn mathematics, and especially topology, a Poincaré complex (named after the mathematician Henri Poincaré) is an abstraction of the singular chain complex of a closed, orientable manifold. The singular homology and cohomology groups of a closed, orientable manifold are related by Poincaré duality. Poincaré duality is an isomorphism between homology and cohomology groups. A chain complex is called a Poincaré complex if its homology groups and cohomology groups have the abstract properties of Poincaré duality.
Fer à cheval de SmaleL'application fer à cheval est un des exemples classiques de systèmes dynamiques. Elle fut introduite par Stephen Smale à l'occasion de l'étude de l'oscillateur de Van der Pol. Son comportement est chaotique alors qu'on l'obtient en effectuant une succession d'opérations géométriques très simples : rétrécissement dans une direction, étalement dans une autre, et repliement en forme de fer à cheval. L'application fer à cheval est un difféomorphisme qui laisse stable la figure formée d'un carré avec deux demi-disques accolés.
Dualité de PoincaréEn mathématiques, le théorème de de Poincaré est un résultat de base sur la structure des groupes d'homologie et cohomologie des variétés, selon lequel, si M est une variété « fermée » (i.e. compacte et sans bord) orientée de dimension n, le k-ième groupe de cohomologie de M est isomorphe à son (n – k)-ième groupe d'homologie, pour tout entier naturel k ≤ n : La dualité de Poincaré a lieu quel que soit l'anneau de coefficients, dès qu'on a choisi une orientation relativement à cet anneau ; en particulier, puisque toute variété a une unique orientation mod 2, la dualité est vraie mod 2 sans hypothèse d'orientation.
Pendule simpleEn physique, le pendule simple est une masse ponctuelle fixée à l'extrémité d'un fil sans masse et inextensible, et oscillant sous l'effet de la pesanteur. Il s'agit du modèle de pendule pesant le plus simple. Il est parfois appelé pendule de gravité idéal et, par opposition, tout pendule de gravité réel est appelé pendule pesant composé. Par extension, on appelle aussi parfois pendule simple un dispositif dans lequel le fil inextensible est remplacé par une tige rigide de masse nulle pouvant tourner sans frottement dans un plan vertical autour de son extrémité fixe (liaison parfaite).
Small-angle approximationThe small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision.