Transformée de HadamardLa transformée de Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2 nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels). Ces matrices sont des matrices de Hadamard.
Walsh matrixHadamard matrix In mathematics, a Walsh matrix is a specific square matrix of dimensions 2^n, where n is some particular natural number. The entries of the matrix are either +1 or −1 and its rows as well as columns are orthogonal, i.e. dot product is zero. The Walsh matrix was proposed by Joseph L. Walsh in 1923. Each row of a Walsh matrix corresponds to a Walsh function. The Walsh matrices are a special case of Hadamard matrices.
Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Transformée de Fourier quantiqueEn informatique quantique, la transformée de Fourier quantique (TFQ) est une transformation linéaire sur des bits quantiques, et est l'analogie quantique de la transformée de Fourier discrète. La transformée de Fourier quantique est l'un des nombreux algorithmes quantiques, qui incluent notamment l'algorithme de Shor qui permet de factoriser et de calculer le logarithme discret, l'algorithme d'estimation de phase quantique qui estime les valeurs propres d'un opérateur unitaire et les algorithmes traitant du problème de sous-groupe caché .
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Porte quantiqueEn informatique quantique, et plus précisément dans le modèle de de calcul, une porte quantique (ou porte logique quantique) est un circuit quantique élémentaire opérant sur un petit nombre de qubits. Les portes quantiques sont les briques de base des circuits quantiques, comme le sont les portes logiques classiques pour des circuits numériques classiques. Contrairement à de nombreuses portes logiques classiques, les portes logiques quantique sont « réversibles ».
Arbre enracinéEn théorie des graphes, un arbre enraciné ou une arborescence est un graphe acyclique orienté possédant une unique racine, et tel que tous les nœuds sauf la racine ont un unique parent. En informatique, c'est également une structure de données récursive utilisée pour représenter ce type de graphes. Dans un arbre, on distingue deux catégories d'éléments : les feuilles (ou nœuds externes), éléments ne possédant pas de fils dans l'arbre ; les nœuds internes, éléments possédant des fils (sous-branches).
Arbre BEn informatique, un arbre B (appelé aussi B-arbre par analogie au terme anglais « B-tree ») est une structure de données en arbre équilibré. Les arbres B sont principalement mis en œuvre dans les mécanismes de gestion de bases de données et de systèmes de fichiers. Ils stockent les données sous une forme triée et permettent une exécution des opérations d'insertion et de suppression en temps toujours logarithmique. Le principe est de permettre aux nœuds parents de posséder plus de deux nœuds enfants : c'est une généralisation de l’arbre binaire de recherche.
Arborescencethumb|Exemple de représentation arborescente En mathématiques, plus précisément dans la théorie des graphes : une arborescence est un arbre comportant un sommet particulier , nommé racine de l'arborescence, à partir duquel il existe un chemin unique vers tous les autres sommets. En informatique, cette notion désigne souvent celle d'arbre de la théorie des graphes. Une arborescence désigne alors généralement une organisation des données en mémoire, de manière logique et hiérarchisée, utilisant une structure algorithmique d'arbre.
Matrice de HadamardUne matrice de Hadamard est une matrice carrée dont les coefficients sont tous 1 ou –1 et dont les lignes sont toutes orthogonales entre elles. Le nom retenu pour ces matrices rend hommage au mathématicien français Jacques Hadamard. Des exemples de telles matrices avaient été donnés par James Joseph Sylvester. Pour une matrice d'ordre , la propriété d'orthogonalité des colonnes peut également s'écrire sous la forme où In est la matrice identité d'ordre et t est la matrice transposée de .