Resolution (algebra)In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
CobordismeEn topologie différentielle, le cobordisme est une relation d'équivalence entre variétés différentielles compactes. Deux variétés compactes M et N sont dites cobordantes ou en cobordisme si leur réunion disjointe peut être réalisée comme le bord d'une variété à bord compacte L. On dit alors que cette variété L est un cobordisme entre M et N, ou bien que L réalise un cobordisme entre M et N. L'existence d'un tel cobordisme implique que M et N soient de même dimension.
Generic flatnessIn algebraic geometry and commutative algebra, the theorems of generic flatness and generic freeness state that under certain hypotheses, a sheaf of modules on a scheme is flat or free. They are due to Alexander Grothendieck. Generic flatness states that if Y is an integral locally noetherian scheme, u : X → Y is a finite type morphism of schemes, and F is a coherent OX-module, then there is a non-empty open subset U of Y such that the restriction of F to u−1(U) is flat over U. Because Y is integral, U is a dense open subset of Y.
Calcul de SchubertEn mathématiques, et plus précisément en géométrie algébrique, le calcul de Schubert est une technique introduite à la fin du par Hermann Schubert pour résoudre des problèmes de dénombrement en géométrie projective. C'est un précurseur de plusieurs théories plus modernes, comme celle des classes caractéristiques, et ses aspects algorithmiques font toujours l'objet de recherches ; la systématisation et la justification de ce calcul est l'objet du quinzième problème de Hilbert.
Algebraic geometry and analytic geometryIn mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.
Longueur d'un moduleLa longueur d'un module M sur un anneau A est un entier naturel ou l'infini. Elle généralise d'une certaine manière la notion de dimension d'un espace vectoriel sur un corps. Les modules de longueur finie ont beaucoup de particularités généralisant celles des espaces vectoriels de dimension finie. Les modules simples sont les modules M non nuls qui n'ont pas d'autres sous-modules que {0} et M. Par exemple, un espace vectoriel est simple en tant que module si et seulement si c'est une droite vectorielle.
Cycle (géométrie algébrique)En géométrie algébrique, les cycles sont des combinaisons formelles de fermés irréductibles d'un schéma donné. Le quotient du groupe des cycles par une relation d'équivalence convenable aboutit aux qui sont des objets fondamentaux. Tous les schémas considérés ici seront supposés noethériens de dimension finie. On fixe un schéma qu'on supposera noethérien de dimension finie . Pour tout entier positif ou nul , on appelle -cycle irréductible (resp. -cocycle irréductible) de un fermé irréductible de dimension (resp.
Dimension theory (algebra)In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety (and by extension that of a scheme). The need of a theory for such an apparently simple notion results from the existence of many definitions of dimension that are equivalent only in the most regular cases (see Dimension of an algebraic variety).
Coherent sheaf cohomologyIn mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
Préfaisceau (théorie des catégories)En théorie des catégories — une branche des mathématiques — la notion de préfaisceau généralise celle du même nom en géométrie algébrique. Les préfaisceaux y sont des objets particulièrement courants et donnent lieu à la notion de topos sur un site. Soient et des catégories, un préfaisceau de à valeurs dans est un foncteur : de la catégorie opposée à dans . De manière strictement équivalente, c'est un foncteur contravariant de dans .