Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
Corps localEn mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local.
Unimodular latticeIn geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E8 lattice and the Leech lattice are two famous examples. A lattice is a free abelian group of finite rank with a symmetric bilinear form (·, ·). The lattice is integral if (·,·) takes integer values. The dimension of a lattice is the same as its rank (as a Z-module).
Idéal fractionnairevignette|Richard Dedekind donne en 1876 la définition d'idéal fractionnaire. En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs.
Idéal principalEn mathématiques, plus particulièrement dans la théorie des anneaux, un idéal principal est un idéal engendré par un seul élément. Soit A un anneau. Un idéal à droite I est dit principal à droite s'il est égal à l'idéal à droite engendré par un élément a, c'est-à-dire si I = aA := { ax | x ∈ A }. Un idéal à gauche I est dit principal à gauche s'il est égal à l'idéal à gauche engendré par un élément a, c'est-à-dire si I = Aa := { xa | x ∈ A }.
Idéal (théorie des ordres)En mathématiques, un idéal au sens de la théorie des ordres est un sous-ensemble particulier d'un ensemble ordonné. Bien qu'à l'origine ce terme soit issu de la notion algébrique d'idéal d'un anneau, il a été généralisé en une notion distincte. Les idéaux interviennent dans beaucoup de constructions en théorie des ordres, en particulier des treillis. Un idéal d'un ensemble ordonné (E, ≤) est une partie non vide I de E telle que : I est une section commençante, c'est-à-dire que tout minorant d'un élément de I appartient à I ; I est un ensemble ordonné filtrant, c'est-à-dire que deux éléments quelconques de I possèdent toujours un majorant commun dans I.
Problème du nombre de classes pour les corps quadratiques imaginairesEn mathématiques, le problème du nombre de classes de Gauss pour les corps quadratiques imaginaires, au sens usuel, est de fournir pour chaque entier n ≥ 1, la liste complète des corps quadratiques imaginaires dont l'anneau des entiers a un nombre de classes égal à n. C'est une question de calcul effectif. La première démonstration (Hans Heilbronn, 1934) qu'une telle liste est finie ne fournissait pas, même en théorie, un moyen de la calculer (voir Résultats effectifs en théorie des nombres).
Tour de corpsEn mathématiques, une tour de corps est une suite d'extensions de corps Le nom de tour vient du fait qu'une telle suite est souvent écrite sous la forme Une tour de corps peut aussi bien être finie qu'infinie. est une tour de corps finie composée des corps de nombres rationnels, réels puis complexes. Soit la suite définie par F0 = le corps Q des rationnels et (i.e. Fn+1 est obtenu à partir de Fn en ajoutant la racine 2n-ième de 2). Cette tour de corps est infinie.
Crible algébriqueEn théorie des nombres, l'algorithme du crible du corps de nombres généralisé (GNFS) obtient la décomposition d'un entier en produit de facteurs premiers. C'est à l'heure actuelle (2018) l'algorithme le plus efficace connu pour obtenir cette décomposition, lorsque le nombre considéré est assez grand, c'est-à-dire au-delà d'environ 10100, et ne possède pas de structure remarquable. Cette efficacité est due pour partie à l'utilisation d'une méthode de crible et pour partie à l'utilisation d'algorithmes efficaces pour certaines opérations (comme la manipulation de matrices creuses).