Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Théorie du chaosLa théorie du chaos est une théorie scientifique rattachée aux mathématiques et à la physique qui étudie le comportement des systèmes dynamiques sensibles aux conditions initiales, un phénomène généralement illustré par l'effet papillon. Dans de nombreux systèmes dynamiques, des modifications infimes des conditions initiales entraînent des évolutions rapidement divergentes, rendant toute prédiction impossible à long terme.
Système complexevignette|Visualisation sous forme de graphe d'un réseau social illustrant un système complexe. Un système complexe est un ensemble constitué d'un grand nombre d'entités en interaction dont l'intégration permet d'achever un but commun. Les systèmes complexes sont caractérisés par des propriétés émergentes qui n'existent qu'au niveau du système et ne peuvent pas être observées au niveau de ses constituants. Dans certains cas, un observateur ne peut pas prévoir les rétroactions ou les comportements ou évolutions des systèmes complexes par le calcul, ce qui amène à les étudier à l'aide de la théorie du chaos.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Synchronisationthumb|Des parachutistes synchronisent leurs montres avant d'être parachutés en France dans la nuit du 5 au (Opération Tonga). La synchronisation (du grec / sun, « ensemble » et / khrónos, « temps ») est l'action de coordonner plusieurs opérations entre elles en fonction du temps. Les systèmes dont tous les éléments sont synchronisés sont dits synchrones. Certains systèmes tolèrent d'être approximativement synchronisés (quasi synchrones).
Billard (mathématiques)Un billard mathématique est un système dynamique dans lequel une particule alterne des mouvements libres sur une surface et des rebonds sur une paroi, sans perte de vitesse. L'angle de rebond est identique à l'angle d'incidence au moment de choc. Ces systèmes dynamiques sont des idéalisations hamiltoniennes du jeu de billard, mais où le domaine encadré par la frontière peut avoir d'autres formes qu'un rectangle et même être multidimensionnel. Les billards dynamiques peuvent aussi être étudiés sur des géométries non euclidiennes.
Synchronisation (multitâches)En programmation concurrente, la synchronisation se réfère à deux concepts distincts mais liés : la synchronisation de processus et la synchronisation de données. La synchronisation de processus est un mécanisme qui vise à bloquer l'exécution de certains processus à des points précis de leur flux d'exécution, de manière que tous les processus se rejoignent à des étapes relais données, tel que prévu par le programmeur. La synchronisation de données, elle, est un mécanisme qui vise à conserver la cohérence des données telles que vues par différents processus, dans un environnement multitâche.
Paramètre (programmation informatique)En programmation informatique, un paramètre est une donnée manipulée par une section de code (voir : sous-programme, fonction, méthode) et connue du code appelant cette section. On distingue deux types de paramètres. Un paramètre d'entrée est une donnée fournie par le code appelant au code appelé. Cette donnée peut être transmise de deux façons : passage par copie (aussi appelé par valeur) : le code appelé dispose d'une copie de la valeur qu'il peut modifier sans affecter l'information initiale dans le code appelant ; passage par adresse (aussi appelé par référence) : le code appelé dispose d'une information lui permettant d'accéder en mémoire à la valeur que le code appelant cherche à lui transmettre.