Circulation routièrethumb|Bouchon routier La circulation routière est le déplacement réglementé des automobiles, d'autres véhicules ou des piétons; au sens large, sur une route, une autoroute ou tout autre type de voirie. vignette|Convention de Genève de 1949 vignette|Convention de Vienne de 1968 La circulation routière s'est développée au vingtième siècle, localement et internationalement. Pour faciliter le développement international de la circulation routière, des conventions ont été établies.
Bandwidth managementBandwidth management is the process of measuring and controlling the communications (traffic, packets) on a network link, to avoid filling the link to capacity or overfilling the link, which would result in network congestion and poor performance of the network. Bandwidth is described by bit rate and measured in units of bits per second (bit/s) or bytes per second (B/s).
Mode de transfert asynchroneLe mode de transfert asynchrone (en anglais Asynchronous Transfer Mode ou ATM) est un protocole de la couche « liaison de donnée» au sens du « modèle OSI » à commutation de cellules, qui a pour objectif de multiplexer différents flots de données sur un même lien physique en utilisant une technique de TDM ou MRT (multiplexage à répartition dans le temps). ATM a été conçu pour fournir un standard réseau unifié qui pourrait supporter un trafic réseau synchrone (SDH), aussi bien qu'un trafic utilisant des paquets (IP, relais de trames.
Tri par paquetsLe tri par paquets est un algorithme de tri qui fonctionne sur des nombres réels appartenant à un intervalle borné fixé à l'avance. Le principe de ce tri consiste à partitionner régulièrement l'intervalle d'entrée en autant de sous-intervalles que l'entrée comporte d'éléments à trier, et à distribuer les données selon leur valeurs en autant de paquets correspondant à ces sous-intervalles. Les paquets sont alors triés séparément à l'aide d'un autre algorithme de tri.
Caméra de surveillance routièreUne caméra de surveillance routière est un système de contrôle vidéo de la circulation routière. Elle peut être de deux types : pour détecter une infraction routière ; pour détecter un incident ou un accident sur le réseau routier. Parmi les dispositifs les plus courants : caméras de surveillance en réseau, telles qu'il en existe dans les grandes agglomérations où les images sont centralisées vers un PC comme la préfecture de Police pour Paris.
Embouteillage (route)vignette|Embouteillage à Los Angeles en 1953. Un embouteillage (« bouchon » ou « file » en Europe, « congestion » au Canada) est un encombrement de la circulation, généralement automobile, réduisant fortement la vitesse de circulation des véhicules sur la voie. right|thumb|Les départs ou les retours de vacances sont une des sources d'embouteillage (Algarve, Portugal, été 2005). Les mots embouteillage, bouchon et congestion (également utilisé en anglais) sont utilisés par analogie, tous ces mots étant auparavant employés dans d'autres domaines.
Théorie des trois phases du traficLa théorie des trois phases du trafic est une théorie alternative de la modélisation du trafic routier mise au point par Boris Kerner entre 1996 et 2002. Elle se concentre principalement sur l'explication physique de la dégradation des conditions de trafic et des embouteillages résultant sur les autoroutes. À la différence des théories classiques basées sur le diagramme fondamental du trafic qui distinguent deux phases ou régimes (trafic fluide et les congestions), la théorie de Kerner propose trois phases.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Système invariantUn processus transformant un signal d’entrée en un signal de sortie (signaux électriques par exemple) est appelé système invariant (ou stationnaire) lorsqu’une translation du temps appliquée à l’entrée se retrouve à la sortie. Dans ce sens, la sortie ne dépend pas explicitement du temps. Si au signal d'entrée , un système invariant associe une sortie , alors quel que soit le décalage temporel appliqué à l'entrée, le système associe au signal la sortie décalée .
Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).