Attaque par extension de longueurEn cryptographie et sécurité des systèmes d'information, une attaque par extension de longueur est un type d'attaque où l'attaquant utilise le hash Hash(message1) et la longueur de message1 pour calculer Hash(message1 ‖ message2) avec un message2 contrôlé par l'attaquant, sans avoir à connaître le contenu de message1. Les algorithmes tels que MD5, SHA-1 et la plupart des versions de SHA-2 qui sont basés sur la construction de Merkle-Damgård sont vulnérables à ce type d'attaque.
Chiffrement par substitutionvignette|Exemple de chiffrement par substitution: le chiffre de César. Le chiffrement par substitution est une technique de chiffrement utilisée depuis bien longtemps puisque le chiffre de César en est un cas particulier. Sans autre précision, elle désigne en général un chiffrement par substitution monoalphabétique, qui consiste à substituer dans un message chacune des lettres de l'alphabet par une autre (du même alphabet ou éventuellement d'un autre alphabet), par exemple, ainsi que procédait César a par d, b par e et ainsi de suite.
Vérification formelleIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Cryptographically secure pseudorandom number generatorA cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also loosely known as a cryptographic random number generator (CRNG). Most cryptographic applications require random numbers, for example: key generation nonces salts in certain signature schemes, including ECDSA, RSASSA-PSS The "quality" of the randomness required for these applications varies.
Groupe compactEn mathématiques, et plus particulièrement en analyse harmonique abstraite, un groupe compact est un groupe topologique dont l'espace topologique sous-jacent est compact. Les groupes compacts sont des groupes unimodulaires, dont la compacité simplifie l'étude. Ces groupes comprennent notamment les groupes finis et les groupes de Lie compacts. Tout groupe compact est limite projective de groupes de Lie compacts. Tout groupe discret fini est un groupe compact. En effet, tout espace discret fini est compact.
Règle de résolutionEn logique mathématique, la règle de résolution ou principe de résolution de Robinson est une règle d'inférence logique qui généralise le modus ponens. Cette règle est principalement utilisée dans les systèmes de preuve automatiques, elle est à la base du langage de programmation logique Prolog. La règle du modus ponens s'écrit et se lit : de p et de "p implique q", je déduis q. On peut réécrire l'implication "p implique q" comme "p est faux ou q est vraie". Ainsi, la règle du modus ponens s'écrit .
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Théorème des facteurs invariantsEn mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants non inversibles sont des obstructions à l'inversibilité des matrices qui n'apparaissent pas dans la théorie des espaces vectoriels. Leur calcul a de nombreuses applications : par exemple trouver la classe d'isomorphie d'un groupe abélien de type fini à partir d'une présentation de celui-ci. Dans un cadre précis, le théorème des facteurs invariants se particularise en théorèmes de réduction d'endomorphisme.
Théorème de compacitévignette|420x420px|Si toute partie finie d'une théorie est satisfaisable (schématisée à gauche), alors la théorie est satisfaisable (schématisée à droite). En logique mathématique, un théorème de compacité énonce que si toute partie finie d'une théorie est satisfaisable alors la théorie elle-même est satisfaisable. Il existe des logiques où il y a un théorème de compacité comme le calcul propositionnel ou la logique du premier ordre (on parle de logiques compactes). Il existe aussi des logiques sans théorème de compacité.