Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Théorie naïve des ensemblesLes ensembles sont d'une importance fondamentale en mathématiques ; en fait, de manière formelle, la mécanique interne des mathématiques (nombres, relations, fonctions, etc.) peut se définir en termes d'ensembles. Il y a plusieurs façons de développer la théorie des ensembles et plusieurs théories des ensembles existent. Par théorie naïve des ensembles, on entend le plus souvent un développement informel d'une théorie des ensembles dans le langage usuel des mathématiques, mais fondée sur les axiomes de la théorie des ensembles de Zermelo ou de Zermelo-Fraenkel avec axiome du choix dans le style du livre Naive Set Theory de Paul Halmos.
Théorie des ensembles de ZermeloLa théorie des ensembles de Zermelo, est la théorie des ensembles introduite en 1908 par Ernst Zermelo dans un article fondateur de l'axiomatisation de la théorie des ensembles moderne, mais aussi une présentation moderne de celle-ci, où les axiomes sont repris dans le langage de la logique du premier ordre, et où l'axiome de l'infini est modifié pour permettre la construction des entiers naturels de von Neumann. Cette section présente les axiomes originaux de l'article de Zermelo paru en 1908, numérotés comme dans cet article.
Théorie des ensembles de Zermelo-Fraenkelvignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
Constructive set theoryAxiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be set bounded, motivated by results tied to impredicativity.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Calcul des prédicatsEn logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Intersection (mathématiques)Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté , dit « A inter B », qui contient tous les éléments appartenant à la fois à A et à B, et seulement ceux-là. A et B sont disjoints si et seulement si est l'ensemble vide ∅. A est inclus dans B si et seulement si .
Puits à eauUn puits à eau est le résultat d'un terrassement vertical, mécanisé (par forage, havage, etc.) ou manuel, permettant l'exploitation d'une nappe d'eau souterraine, autrement dit un aquifère. L'eau peut être remontée au niveau du sol grâce à un seau ou une pompe, manuelle ou non. Les puits sont très divers, que ce soit par leur mode de creusement, leur profondeur, leur volume d'eau, ou leur équipement. Les premiers puits étaient probablement de simples trous mal protégés des éboulements et qui n'ont pas résisté au temps et ont disparu.
UML (informatique)Le Langage de Modélisation Unifié, de l'anglais Unified Modeling Language (UML), est un langage de modélisation graphique à base de pictogrammes conçu comme une méthode normalisée de visualisation dans les domaines du développement logiciel et en conception orientée objet. L'UML est une synthèse de langages de modélisation objet antérieurs : Booch, OMT, OOSE. Principalement issu des travaux de Grady Booch, James Rumbaugh et Ivar Jacobson, UML est à présent un standard adopté par l'Object Management Group (OMG).