Loi de ParetoEn théorie des probabilités, la loi de Pareto, d'après Vilfredo Pareto, est un type particulier de loi de puissance qui a des applications en sciences physiques et sociales. Elle permet notamment de donner une base théorique au « principe des 80-20 », aussi appelé principe de Pareto. Soit la variable aléatoire X qui suit une loi de Pareto de paramètres (x,k), avec k un réel positif, alors la loi est caractérisée par : Les lois de Pareto sont des lois continues.
Credible intervalIn Bayesian statistics, a credible interval is an interval within which an unobserved parameter value falls with a particular probability. It is an interval in the domain of a posterior probability distribution or a predictive distribution. The generalisation to multivariate problems is the credible region. Credible intervals are analogous to confidence intervals and confidence regions in frequentist statistics, although they differ on a philosophical basis: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value.
Paramètre d'échellevignette|Animation de la fonction de densité d'une loi normale (forme de cloche). L'écart-type est un paramètre d'échelle. En l'augmentant, on étale la distribution. En le diminuant, on la concentre. En théorie des probabilités et en statistiques, un paramètre d'échelle est un paramètre qui régit l'aplatissement d'une famille paramétrique de lois de probabilités. Il s'agit principalement d'un facteur multiplicatif. Si une famille de densités de probabilité, dépendant du paramètre θ est de la forme où f est une densité, alors θ est bien un paramètre d'échelle.
Puissance statistiqueLa puissance statistique d'un test est en statistique la probabilité de rejeter l'hypothèse nulle (par exemple l'hypothèse selon laquelle les groupes sont identiques au regard d'une variable) sachant que l'hypothèse nulle est incorrecte (en réalité les groupes sont différents). On peut l'exprimer sous la forme 1-β où β est le risque de c'est-à-dire le risque de ne pas démontrer que deux groupes sont différents alors qu'ils le sont dans la réalité.
Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Loi inverse-gammaDans la Théorie des probabilités et en statistiques, la distribution inverse-gamma est une famille de lois de probabilité continues à deux paramètres sur la demi-droite des réels positifs. Il s'agit de l'inverse d'une variable aléatoire distribuée selon une distribution Gamma. La densité de probabilité de la loi inverse-gamma est définie sur le support par: où est un paramètre de forme et un paramètre d'intensité, c'est-à-dire l'inverse d'un paramètre d'échelle.
Loi de FisherEn théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Hypothèse nulleEn statistiques et en économétrie, l'hypothèse nulle (symbole international : ) est une hypothèse postulant l'égalité entre des paramètres statistiques (généralement, la moyenne ou la variance) de deux échantillons dont elle fait l’hypothèse qu'ils sont pris sur des populations équivalentes. Elle est toujours testée contre une hypothèse alternative qui postule soit la différence des données (test bilatéral), soit une inégalité (plus petit que ou plus grand que) entre les données (test unilatéral).
Interprétations de la probabilitéLe mot probabilité a été utilisé dans une variété de domaines depuis qu'il a été appliqué à l'étude mathématique des jeux de hasard. Est-ce que la probabilité mesure la tendance réelle physique de quelque chose de se produire, ou est-ce qu'elle est une mesure du degré auquel on croit qu'elle se produira, ou faut-il compter sur ces deux éléments ? Pour répondre à ces questions, les mathématiciens interprètent les valeurs de probabilité de la théorie des probabilités.
Odds ratioL’odds ratio (OR), également appelé rapport des chances, rapport des cotes ou risque relatif rapproché, est une mesure statistique, souvent utilisée en épidémiologie, exprimant le degré de dépendance entre des variables aléatoires qualitatives. Il est utilisé en inférence bayésienne et en régression logistique, et permet de mesurer l'effet d'un facteur. Lodds ratio se définit comme le rapport de la cote d'un événement arrivant à un groupe A d'individus, par exemple une maladie, avec celle du même événement arrivant à un groupe B d'individus.