Effects of climate change on agricultureThe effects of climate change on agriculture can result in lower crop yields and nutritional quality due to drought, heat waves and flooding as well as increases in pests and plant diseases. Climate change impacts are making it harder for agricultural activities to meet human needs. The effects are unevenly distributed across the world and are caused by changes in temperature, precipitation and atmospheric carbon dioxide levels due to global climate change. In 2019, millions were already suffering from food insecurity due to climate change.
Effects of climate change on the water cycleThe effects of climate change on the water cycle are profound and have been described as an intensification or a strengthening of the water cycle (also called hydrologic cycle). This effect has been observed since at least 1980. One example is the intensification of heavy precipitation events. This has important negative effects on the availability of freshwater resources, as well as other water reservoirs such as oceans, ice sheets, atmosphere and land surface.
PrécipitationsLes précipitations désignent toutes les formes de l'eau à l'état liquide ou solide provenant de l'atmosphère. Ces hydrométéores (cristaux de glace ou gouttelettes d'eau), ayant été soumis à des processus de condensation et d'agrégation à l'intérieur des nuages, sont devenus trop lourds pour demeurer en suspension dans l'atmosphère et tombent au sol ou s'évaporent en virga avant de l'atteindre. Les précipitations se caractérisent par trois principaux paramètres : leur volume, leur intensité et leur fréquence qui varient selon les lieux et les périodes (jours, mois ou années).
Registre de températurevignette|400px|Graphique des écarts des températures globales moyennes de surface par rapport à la moyenne 1961-1990 (basé sur les données du MetOffice). Le registre de température montre les fluctuations de la température de l'atmosphère et les océans au travers des différentes périodes de temps. L'information la plus détaillée existe depuis 1850, lorsque les mesures méthodiques fondées sur des thermomètres ont commencé. Il existe de nombreuses estimations de températures depuis la fin de la glaciation du Pléistocène, en particulier pendant l'époque courante de l'Holocène.
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi de probabilité d'entropie maximaleEn statistique et en théorie de l'information, une loi de probabilité d'entropie maximale a une entropie qui est au moins aussi grande que celle de tous les autres membres d'une classe spécifiée de lois de probabilité. Selon le principe d'entropie maximale, si rien n'est connu sur une loi , sauf qu'elle appartient à une certaine classe (généralement définie en termes de propriétés ou de mesures spécifiées), alors la loi avec la plus grande entropie doit être choisie comme la moins informative par défaut.
Indecomposable distributionIn probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .