Vecteur de KillingEn mathématiques, un vecteur de Killing, ou champ de Killing, est un champ vectoriel sur une variété (pseudo-)riemannienne qui conserve la métrique de cette variété et met en évidence les symétries continues de celle-ci. Intuitivement un vecteur de Killing peut être vu comme un « champ de déplacement » , c'est-à-dire associant à un point M de la variété le point M' défini par le déplacement de M le long de la courbe passant par M dont est le vecteur tangent.
Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .
Théorème de Frobenius (géométrie différentielle)Le théorème de Frobenius donne une condition nécessaire et suffisante d'intégrabilité locale d'un système d'équations aux dérivées partielles du premier ordre dont le membre de droite dépend des variables, des inconnues, mais ne dépend pas de dérivées partielles de ces inconnues : un tel système d'équations aux dérivées partielles est appelé un « système de Pfaff ». Les fonctions du second membre sont supposées seulement de classe , ce qui rend impossible l'application du théorème de Cauchy-Kowalevski, qui suppose ces fonctions analytiques.
Distribution (differential geometry)In differential geometry, a discipline within mathematics, a distribution on a manifold is an assignment of vector subspaces satisfying certain properties. In the most common situations, a distribution is asked to be a vector subbundle of the tangent bundle . Distributions satisfying a further integrability condition give rise to foliations, i.e. partitions of the manifold into smaller submanifolds. These notions have several applications in many fields of mathematics, e.g.
Géométrie de contactLa géométrie de contact est la partie de la géométrie différentielle qui étudie les formes et structures de contact. Elle entretient d'étroits liens avec la géométrie symplectique, la géométrie complexe, la théorie des feuilletages de codimension 1 et les systèmes dynamiques. La géométrie de contact classique est née de l'étude de la thermodynamique et de l'optique géométrique. Une structure de contact sur une variété est un champ d'hyperplans c'est-à-dire la donnée, en tout point de la variété, d'un hyperplan dans l'espace tangent.
Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
CodimensionLa codimension est une notion de géométrie, rencontrée en algèbre linéaire, en géométrie différentielle et en géométrie algébrique. C'est une mesure de la différence de tailles entre un espace et un sous-espace. La codimension dans un espace vectoriel E d'un sous-espace vectoriel F est la dimension de l'espace vectoriel quotient E/F : Cette codimension est aussi égale à la dimension de n'importe quel supplémentaire de F dans E car tous sont isomorphes à E/F. Il résulte de la définition que F = E si et seulement si codim(F) = 0.
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Fibré normalEn géométrie différentielle, le fibré normal d’une sous-variété différentielle est un fibré vectoriel orthogonal au fibré tangent de la sous-variété dans celui de la variété ambiante. La définition s’étend au cas d’une immersion d’une variété différentielle dans une autre. Elle s’étend aussi plus généralement en topologie différentielle comme un fibré supplémentaire au fibré tangent de la sous-variété.