Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Trigonometric interpolationIn mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation of periodic functions. An important special case is when the given data points are equally spaced, in which case the solution is given by the discrete Fourier transform.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Méthode des moindres carrés ordinairevignette|Graphique d'une régression linéaire La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur.
Interpolation au plus proche voisinLinterpolation au plus proche voisin (ou interpolation arrondie) est une méthode simple d'interpolation numérique d'un ensemble de points en dimension 1 ou supérieure (interpolation multivariée). Le problème de l'interpolation consiste à calculer une valeur approchée d'une fonction en un point quelconque à partir des valeurs de la fonction données en des points définis. L'algorithme du plus proche voisin détermine la valeur recherchée comme étant égale à la valeur au point le plus proche, sans considérer les autres valeurs connues, construisant ainsi une fonction constante par morceaux.
Interpolation bicubiquevignette|Illustration de l'interpolation bicubique sur un ensemble de données aléatoires En mathématiques, l'interpolation bicubique est une extension de l'interpolation cubique pour interpoler un ensemble de points distribués sur une grille régulière bidimensionnelle. La surface interpolée est plus lisse que les surfaces correspondantes obtenues par interpolation bilinéaire ou par sélection du plus proche voisin. L'interpolation bicubique peut être accomplie en utilisant soit des polynômes de Lagrange, soit des splines cubiques, soit un algorithme de convolution cubique.
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.
Régression des moindres carrés partielsLa régression des moindres carrés partiels a été inventée en 1983 par Svante Wold et son père Herman Wold ; on utilise fréquemment l'abréviation anglaise régression PLS ( et/ou ). La régression PLS maximise la variance des prédicteurs (Xi) = X et maximise la corrélation entre X et la variable à expliquer Y. Cet algorithme emprunte sa démarche à la fois à l'analyse en composantes principales (ACP) et à la régression.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.