Principe d'incertitudeEn mécanique quantique, le principe d'incertitude ou, plus correctement, principe d'indétermination, aussi connu sous le nom de principe d'incertitude de Heisenberg, désigne toute inégalité mathématique affirmant qu'il existe une limite fondamentale à la précision avec laquelle il est possible de connaître simultanément deux propriétés physiques d'une même particule ; ces deux variables dites complémentaires peuvent être sa position (x) et sa quantité de mouvement (p).
Système invariantUn processus transformant un signal d’entrée en un signal de sortie (signaux électriques par exemple) est appelé système invariant (ou stationnaire) lorsqu’une translation du temps appliquée à l’entrée se retrouve à la sortie. Dans ce sens, la sortie ne dépend pas explicitement du temps. Si au signal d'entrée , un système invariant associe une sortie , alors quel que soit le décalage temporel appliqué à l'entrée, le système associe au signal la sortie décalée .
Onde planeL'onde plane est un concept issu de la physique de la propagation des ondes. C'est une onde dont les fronts d'onde sont des plans infinis, tous perpendiculaires à une même direction de propagation désignée par le vecteur . En prenant par exemple dans la direction z, alors cette onde ne dépend pas des coordonnées x et y : Ainsi, la grandeur mesurée dépend uniquement du temps et d'une seule variable d'espace en coordonnées cartésiennes mais elle ne dépend pas du point considéré dans un plan (P) quelconque orthogonal à la direction de propagation.
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Algorithme de Primthumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe.
Optical resolutionOptical resolution describes the ability of an imaging system to resolve detail, in the object that is being imaged. An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes (given suitable design, and adequate alignment) to the optical resolution of the system; the environment in which the imaging is done often is a further important factor. Resolution depends on the distance between two distinguishable radiating points.
Interférométrievignette|Le trajet de la lumière à travers un interféromètre de Michelson. Les deux rayons lumineux avec une source commune se combinent au miroir semi-argenté pour atteindre le détecteur. Ils peuvent interférer de manière constructive (renforcement de l'intensité) si leurs ondes lumineuses arrivent en phase, ou interférer de manière destructive (affaiblissement de l'intensité) s'ils arrivent en déphasage, en fonction des distances exactes entre les trois miroirs.
Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Suite de polynômes orthogonauxEn mathématiques, une suite de polynômes orthogonaux est une suite infinie de polynômes p0(x), p1(x), p2(x) ... à coefficients réels, dans laquelle chaque pn(x) est de degré n, et telle que les polynômes de la suite sont orthogonaux deux à deux pour un produit scalaire de fonctions donné. Cette notion est utilisée par exemple en cryptologie ou en analyse numérique. Elle permet de résoudre de nombreux problèmes de physique, comme en mécanique des fluides ou en traitement du signal.
Algorithme de DijkstraEn théorie des graphes, l'algorithme de Dijkstra (prononcé ) sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Plus précisément, il calcule des plus courts chemins à partir d'une source vers tous les autres sommets dans un graphe orienté pondéré par des réels positifs. On peut aussi l'utiliser pour calculer un plus court chemin entre un sommet de départ et un sommet d'arrivée.