Structure cristallineLa structure cristalline (ou structure d'un cristal) donne l'arrangement des atomes dans un cristal. Ces atomes se répètent périodiquement dans l'espace sous l'action des opérations de symétrie du groupe d'espace et forment ainsi la structure cristalline. Cette structure est un concept fondamental pour de nombreux domaines de la science et de la technologie. Elle est complètement décrite par les paramètres de maille du cristal, son réseau de Bravais, son groupe d'espace et la position des atomes dans l'unité asymétrique la maille.
Extension de groupesEn mathématiques, plus précisément en théorie des groupes, une extension de groupes est une manière de décrire un groupe en termes de deux groupes « plus petits ». Plus précisément, une extension d'un groupe Q par un groupe N est un groupe G qui s'insère dans une suite exacte courte Autrement dit : G est une extension de Q par N si (à isomorphismes près) N est un sous-groupe normal de G et Q est le groupe quotient G/N. L'extension est dite centrale si N est inclus dans le centre de G.
Extension séparableEn mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux.
Similitude (géométrie)En géométrie euclidienne, une similitude est une transformation qui multiplie toutes les distances par une constante fixe, appelée son rapport. L' de toute figure par une telle application est une figure semblable, c'est-à-dire intuitivement « de même forme ». thumb|300px|Dans ce dessin, les objets de même couleur sont semblables. Les isométries, c'est-à-dire les transformations qui conservent les distances sont des cas particuliers de similitudes ; elles transforment des figures en des figures de même forme et de même taille.
YCbCrLe modèle YCbCr ou plus précisément Y'CbCr est la formulation représentant l'espace colorimétrique d'un signal vidéo analogique, développé essentiellement pour traiter les problèmes observés lors de la télédiffusion hertzienne. Toute image captée par un équipement optique ou caméra vidéo représente la somme des couleurs qui la composent, que le résultat produit apparaissent en couleur ou en noir et blanc.
Topologie en basses dimensionsEn mathématiques, la topologie en basses dimensions est la branche de la topologie qui concerne les variétés de dimension inférieure ou égale à quatre. Des sujets représentatifs en sont l'étude des variétés de dimension 3 et la théorie des nœuds et des tresses. Elle fait partie de la topologie géométrique. Un certain nombre d'avancées, à partir des années 1960, ont mis l'accent sur les basses dimensions en topologie.
Extension normaleEn mathématiques, une extension L d'un corps K est dite normale ou quasi-galoisienne si c'est une extension algébrique et si tout morphisme de corps de L dans un corps le contenant, induisant l'identité sur K, a son image contenue dans L. De façon équivalente, l'extension L/K est normale si elle est algébrique et si tout conjugué d'un élément de L appartient encore à L. Cette propriété est utilisée pour définir une extension de Galois : c'est une extension algébrique séparable et normale.
Extension de nom de fichierEn informatique, une extension de nom de fichier (ou simplement extension de fichier, voire extension) est un suffixe de nom de fichier fait pour identifier son format. Ainsi, on dira qu'un fichier nommé exemple.txt a l'extension .txt (ou simplement txt). Ainsi la notion d'extension se spécifie-t-elle au moins par l'adoption conventionnelle d'un caractère dit séparateur (le point dans l'exemple précédent), suivi d'une chaîne (éventuellement vide) libre composée de caractères tirés d'une liste excluant le séparateur d'extension lui-même et les caractères interdits par le système de fichiers (et éventuellement de leur position dans la chaîne, comme l'antislash interdit partout et l'espace interdit en début et fin dans Windows).
Système cristallin cubiqueEn cristallographie, le système cristallin cubique (ou isométrique) est un système cristallin qui contient les cristaux dont la maille élémentaire est cubique, c'est-à-dire possédant quatre axes ternaires de symétrie. Il existe trois types de telles structures : cubique simple, cubique centrée et cubique à faces centrées. Classe cristalline Le tableau ci-dessous fournit les numéros de groupe d'espace des tables internationales de cristallographie du système cristallin cubique, les noms des classes cristallines, les notations Schoenflies, internationales, et des groupes ponctuels, des exemples, le type et les groupes d'espace.
YUV[[Fichier:Yuv.png|thumb|Exemple d'une plage U-V, où Y' = 0,5, représenté à l'intérieur de la gamme de couleurs R'G'B' ; en noir et blanc, seule Y est utilisée, toutes ces couleurs rendent donc le même gris.]] thumb|Décomposition d'une image en Y'UV. Le modèle YUV ou plus précisément Y'UV''' définit un espace colorimétrique en trois composantes. La première, Y', représente la luma'' (à ne pas confondre avec la luminance relative notée Y, le symbole prime de Y' indiquant une correction de gamma) et les deux autres, U et V, représentent la chrominance.