Résumé
En géométrie euclidienne, une similitude est une transformation qui multiplie toutes les distances par une constante fixe, appelée son rapport. L' de toute figure par une telle application est une figure semblable, c'est-à-dire intuitivement « de même forme ». thumb|300px|Dans ce dessin, les objets de même couleur sont semblables. Les isométries, c'est-à-dire les transformations qui conservent les distances sont des cas particuliers de similitudes ; elles transforment des figures en des figures de même forme et de même taille. Les autres similitudes sont les composées d'une isométrie et d'une homothétie qui agrandit ou réduit la taille des figures. Parmi les similitudes, certaines conservent l'orientation, elles sont appelées similitudes directes. Les autres sont appelées similitudes indirectes. Dans le plan, les translations, les rotations, les symétries orthogonales selon un axe, les homothéties sont des cas particuliers de similitudes. On démontre qu'une similitude plane est toujours décomposable en au plus deux transformations de ce type. L'expression complexe d'une similitude plane est la donnée de la relation entre l'affixe d'un point et l'affixe de son image, l'expression complexe d'une similitude directe est celle d'une application affine sur le corps des complexes . Dans un espace euclidien quelconque, la similitude se décrit à l'aide d'une matrice. Dans le cas d'une similitude vectorielle, cette matrice est inversible et la matrice inverse est proportionnelle à la matrice transposée. Une similitude peut aussi se définir plus généralement dans un espace vectoriel quelconque muni d'une forme quadratique. thumb|Le L bleu est l'image du L noir par une similitude directe de rapport plus grand que 1 (agrandissement), le L inversé rouge est l'image du L noir par une similitude indirecte de rapport plus petit que 1 (réduction) Si l'on considère, dans le plan euclidien, une transformation, c'est-à-dire une bijection du plan dans lui-même, ƒ, les propositions suivantes sont équivalentes : ƒ multiplie les distances par un réel strictement positif k ; ƒ conserve les rapports de distances ; ƒ conserve les angles géométriques (c'est-à-dire les mesures d'angles non orientés).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.