Singular integralIn mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator whose kernel function K : Rn×Rn → R is singular along the diagonal x = y. Specifically, the singularity is such that |K(x, y)| is of size |x − y|−n asymptotically as |x − y| → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over |y − x| > ε as ε → 0, but in practice this is a technicality.
Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Filtre linéaireUn filtre linéaire est, en traitement du signal, un système qui applique un opérateur linéaire à un signal d'entrée. Les filtres linéaires sont rencontrés le plus souvent en électronique, mais il est possible d'en trouver en mécanique ou dans d'autres technologies. Une réponse impulsionnelle est la sortie d'un système dont l'entrée est une impulsion de Dirac(). Les filtres linéaires peuvent être divisés en deux groupes : les filtres à réponse impulsionnelle infinie et les filtres à réponse impulsionnelle finie.
Singular integral operators of convolution typeIn mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space.
Filtre de ButterworthUn filtre de Butterworth est un type de filtre linéaire, conçu pour posséder un gain aussi constant que possible dans sa bande passante. Les filtres de Butterworth furent décrits pour la première fois par l'ingénieur britannique . Le gain d'un filtre de Butterworth est le plus constant possible dans la bande passante et tend vers 0 dB dans la bande de coupure. Sur un diagramme de Bode logarithmique, cette réponse décroît linéairement vers -∞, de -6 dB/octave (-20 dB/décade) pour un filtre de premier ordre, -12 dB/octave soit -40 dB/decade pour un filtre de second ordre, -18 dB/octave soit -60 dB/decade pour un filtre de troisième ordre, etc.
Downsampling (signal processing)In digital signal processing, downsampling, compression, and decimation are terms associated with the process of resampling in a multi-rate digital signal processing system. Both downsampling and decimation can be synonymous with compression, or they can describe an entire process of bandwidth reduction (filtering) and sample-rate reduction. When the process is performed on a sequence of samples of a signal or a continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a lower rate (or density, as in the case of a photograph).
Anti-aliasing filterAn anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is zero, a brick wall filter is an idealized but impractical AAF. A practical AAF makes a trade off between reduced bandwidth and increased aliasing.
Opérateur pseudo-différentielEn analyse mathématique, un opérateur pseudo-différentiel est une extension du concept familier d'opérateur différentiel, permettant notamment l'inclusion d'ordres de dérivation non entiers. Ces opérateurs pseudo-différentiels sont abondamment utilisés dans la théorie des équations aux dérivées partielles et en théorie quantique des champs. On reprend ci-dessous les notations introduites dans l'article opérateur différentiel. Rappelons qu'un opérateur différentiel linéaire d'ordre s'écrit : où les , appelées coefficients de l'opérateur , sont des fonctions des variables d'espace .
Filtre de TchebychevLes filtres de Tchebychev sont un type de filtre caractérisé par l'acceptation d'une ondulation, ou bien en bande passante ou bien en bande atténuée. Dans le premier cas, on parle de filtres de Tchebychev de type 1 ou directs, dans le second, de filtres de Tchebychev de type 2 ou inverses. Les filtres qui présentent une ondulation à la fois en bande passante et en bande atténuée sont appelés filtres elliptiques.
Convertisseur analogique-numériquevignette|Symbole normé du convertisseur analogique numérique Un convertisseur analogique-numérique (CAN, parfois convertisseur A/N, ou en anglais ADC pour Analog to Digital Converter ou plus simplement A/D) est un dispositif électronique dont la fonction est de traduire une grandeur analogique en une valeur numérique codée sur plusieurs bits. Le signal converti est généralement une tension électrique. Le résultat de la conversion s'obtient par la formule : où Q est le résultat de Conversion, Ve, la tension à convertir, n le nombre de bits du convertisseur et Vref la tension de référence de la mesure.