Méthode de l'ellipsoïdeEn optimisation mathématique, la méthode de l'ellipsoïde est une méthode itérative utilisée pour minimiser des fonctions convexes. En informatique théorique, cette méthode est connue comme étant le premier algorithme de complexité polynomiale découvert pour résoudre les problèmes d'optimisation linéaire. L'algorithme construit une suite d'ellipsoïdes de plus en plus petits, qui enserrent à chaque étape le minimum de la fonction objectif.
Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Fitness functionA fitness function is a particular type of objective function that is used to summarise, as a single figure of merit, how close a given design solution is to achieving the set aims. Fitness functions are used in evolutionary algorithms (EA), such as genetic programming and genetic algorithms to guide simulations towards optimal design solutions. In the field of EAs, each design solution is commonly represented as a string of numbers (referred to as a chromosome).
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Prime de risqueLa prime de risque est un concept de finance qui désigne un supplément de rendement exigé par un investisseur afin de compenser un niveau de risque supérieur à la moyenne. Ce phénomène trouve son origine dans l'aversion au risque consubstantielle aux investisseurs : ceux-ci tendent à préférer un gain faible avec une probabilité de paiement élevée à un gain élevé mais assorti d'une probabilité plus faible. La demande des actifs risqués est ainsi moins forte que celle adressée aux actifs à risque faible.
Contrôle interneLe contrôle interne est un dispositif mis en œuvre par la direction d'une administration (privée comme les entreprises ou publique comme les ministères) pour lui permettre de maîtriser les opérations à risques qui doivent être faites par elle. Ses ressources sont pour cela mesurées, dirigées et supervisées de façon à permettre au management de réaliser ses objectifs. C'est une notion fondamentale du management des entreprises et des administrations qui va amener dans les années à venir leur restructuration en profondeur.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Cluster samplingIn statistics, cluster sampling is a sampling plan used when mutually homogeneous yet internally heterogeneous groupings are evident in a statistical population. It is often used in marketing research. In this sampling plan, the total population is divided into these groups (known as clusters) and a simple random sample of the groups is selected. The elements in each cluster are then sampled. If all elements in each sampled cluster are sampled, then this is referred to as a "one-stage" cluster sampling plan.
Fonction poidsUne fonction poids est un outil mathématique pour le calcul de sommes, d'intégrales ou de moyennes dans lesquelles certains éléments auront plus d'importance ou d'influence que d'autres sur le même ensemble. On parle alors pour le résultat de somme pondérée ou de moyenne pondérée. Les fonctions poids sont couramment utilisées en statistique et en analyse, et peuvent être rapprochées du concept de mesure. Le concept a été étendu pour développer le « calcul différentiel pondéré » et le « méta-calcul différentiel ».