Algorithme de triUn algorithme de tri est, en informatique ou en mathématiques, un algorithme qui permet d'organiser une collection d'objets selon une relation d'ordre déterminée. Les objets à trier sont des éléments d'un ensemble muni d'un ordre total. Il est par exemple fréquent de trier des entiers selon la relation d'ordre usuelle « est inférieur ou égal à ». Les algorithmes de tri sont utilisés dans de très nombreuses situations. Ils sont en particulier utiles à de nombreux algorithmes plus complexes dont certains algorithmes de recherche, comme la recherche dichotomique.
Méthode des plans sécantsvignette|Application de la méthode des plans sécants au problème du voyageur de commerce. En mathématiques, et spécialement en optimisation linéaire en nombres entiers, la méthode des plans sécants, ou cutting plane method, est une méthode utilisée pour trouver une solution entière d'un problème d'optimisation linéaire. Elle fut introduite par Ralph E. Gomory puis étudiée par Gomory et Václav Chvátal. Le principe de la méthode est d'ajouter des contraintes au programme linéaire pour le raffiner, et le rapprocher des solutions intégrales.
Théorie de la démonstrationLa théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
Philosophie des mathématiquesLa philosophie des mathématiques est la branche de la philosophie des sciences qui tente de répondre aux interrogations sur les fondements des mathématiques ainsi que sur leur usage. On y croise des questions telles que : « les mathématiques sont-elles nécessaires ? », « pourquoi les mathématiques sont-elles utiles ou efficaces pour décrire la nature ? », « dans quel(s) sens, peut-on dire que les entités mathématiques existent ? » ou « pourquoi et comment peut-on dire qu'une proposition mathématique est vraie ? ».
Algorithme probabilisteEn algorithmique, un algorithme probabiliste, ou algorithme randomisé, est un algorithme qui utilise une source de hasard. Plus précisément le déroulement de l’algorithme fait appel à des données tirées au hasard. Par exemple à un certain point de l’exécution, on tire un bit 0 ou 1, selon la loi uniforme et si le résultat est 0, on fait une certaine action A et si c'est 1, on fait une autre action. On peut aussi tirer un nombre réel dans l'intervalle [0,1] ou un entier dans un intervalle [i..j].
Mathématiquesthumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
SimplexeEn mathématiques, et plus particulièrement en géométrie, un simplexe est une généralisation du triangle à une dimension quelconque. En géométrie, un simplexe ou n-simplexe est l'analogue à n dimensions du triangle. Il doit son nom au fait que c'est l'objet géométrique clos le « plus simple » qui ait n dimensions. Par exemple sur une droite (1 dimension) l'objet le plus simple à 1 dimension est le segment, alors que dans le plan (2 dimensions) l'objet géométrique clos le plus simple à 2 dimensions est le triangle, et dans l'espace (3 dimensions) l'objet géométrique clos le plus simple à 3 dimensions est le tétraèdre (pyramide à base triangulaire).
Courant monophaséUn courant monophasé est un courant électrique alternatif fourni au moyen d'une ligne bifilaire. Il s'oppose aux courants polyphasés, tels que le courant triphasé, pour lesquels plusieurs lignes sont utilisées et déphasées entre elles. Le courant monophasé est principalement utilisé pour l'éclairage et le chauffage, lorsque l'emploi de moteurs de forte puissance n'est pas nécessaire. Un courant monophasé peut être produit à partir d'un courant triphasé en connectant une des trois phases et le neutre, ou en connectant deux des trois phases.