Base de GröbnerEn mathématiques, une base de Gröbner (ou base standard, ou base de Buchberger) d'un idéal I de l'anneau de polynômes K[X, ..., X] est un ensemble de générateurs de cet idéal, vérifiant certaines propriétés supplémentaires. Cette notion a été introduite dans les années 1960, indépendamment par Heisuke Hironaka et Bruno Buchberger, qui lui a donné le nom de son directeur de thèse Wolfgang Gröbner. Les bases de Gröbner ont le grand avantage de ramener l'étude des idéaux polynomiaux à l'étude des idéaux monomiaux (c'est-à-dire formés de monômes), plus faciles à appréhender.
Virgule fixeEn informatique, une représentation d'un nombre en virgule fixe est un type de donnée correspondant à un nombre qui possède (en base deux ou en base dix) un nombre fixe de chiffres après la virgule. Les nombres en virgule fixe sont utiles pour représenter des quantités fractionnaires dans un format utilisant le complément à deux quand le processeur de l'ordinateur n'a aucune unité de calcul en virgule flottante ou quand une virgule fixe permet d'augmenter la vitesse d'exécution ou d'améliorer l'exactitude des calculs.
Arithmétique multiprécisionL'arithmétique multiprécision désigne l'ensemble des techniques mises en œuvre pour manipuler dans un programme informatique des nombres (entiers, rationnels, ou flottants principalement) de taille arbitraire. Il s'agit d'une branche de l'arithmétique des ordinateurs. On oppose l'arithmétique multi-précision à l'arithmétique en simple ou double précision, comme celle spécifiée par le standard IEEE 754 pour les nombres flottants.
Treillis (ensemble ordonné)En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Virgule flottantevignette|Comme la notation scientifique, le nombre à virgule flottante a une mantisse et un exposant. La virgule flottante est une méthode d'écriture de nombres fréquemment utilisée dans les ordinateurs, équivalente à la notation scientifique en numération binaire. Elle consiste à représenter un nombre par : un signe (égal à −1 ou 1) ; une mantisse (aussi appelée significande) ; et un exposant (entier relatif, généralement borné).
Entier algébriqueEn mathématiques, un entier algébrique est un élément d'un corps de nombres qui y joue un rôle analogue à celui d'un entier relatif dans le corps des nombres rationnels. L'étude des entiers algébriques est à la base de l'arithmétique des corps de nombres, et de la généralisation dans ces corps de notions comme celles de nombre premier ou de division euclidienne. Par définition, un entier algébrique est une racine d'un polynôme unitaire à coefficients dans Z.
Dépassement d'entiervignette|Le vol 501 d'Ariane 5 en 1996 s'est soldé par sa destruction en raison d'un dépassement d'entier. Un dépassement d'entier (integer overflow) est, en informatique, une condition qui se produit lorsqu'une opération mathématique produit une valeur numérique supérieure à celle représentable dans l'espace de stockage disponible. Par exemple, l'ajout d'une unité au plus grand nombre pouvant être représenté entraîne un dépassement d'entier. Le dépassement d'entier porte le numéro CWE-190 dans la nomenclature Common Weakness Enumeration.
Entier de Gaussthumb|Carl Friedrich Gauss. En mathématiques, et plus précisément, en théorie algébrique des nombres, un entier de Gauss est un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs. Il s'agit formellement d'un élément de l'anneau des entiers quadratiques de l'extension quadratique des rationnels de Gauss L'ensemble des entiers de Gauss possède une structure forte. Comme tous les ensembles d'entiers algébriques, muni de l'addition et de la multiplication ordinaire des nombres complexes, il forme un anneau intègre, généralement noté , désignant ici l'unité imaginaire.
Anneau des entiersEn algèbre commutative, l'anneau des entiers est une construction que l'on peut obtenir à partir de tout corps de nombres en considérant ses éléments entiers. Par exemple, l'anneau des entiers de est . Il existe des algorithmes efficaces pour calculer cet anneau pour tout corps de nombres. La notion peut en fait être étendue à d'autres objets (notamment les corps de fonctions), et porte une interprétation géométrique. Élément entier Soit K un corps de nombres. Un élément de K est dit entier s'il est racine d'un polynôme unitaire à coefficients dans .
Complete latticeIn mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.