Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Spectroscopie RMN en deux dimensionsLa spectroscopie RMN en deux dimensions ou spectroscopie RMN bidimensionnelle ou encore RMN-2D est un ensemble de dispositifs de reconnaissance de relations de proximité, dans l'espace ou à travers les liaisons, entre plusieurs noyaux actifs en RMN. Il s'agit de RMN de corrélation. Dans une expérience de spectroscopie RMN bidimensionnelle, le résultat est un spectre en trois dimensions : le déplacement chimique pour le noyau 1 (δ1), le déplacement chimique pour le noyau 2 (δ2) et l'intensité du signal.
SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Spectroscopie Mössbauerthumb|right|250px|Spectre Mössbauer du 57Fe La spectroscopie Mössbauer est une méthode de spectroscopie basée sur l'absorption de rayons gamma par les noyaux atomiques dans un solide. Par la mesure des transitions entre les niveaux d'énergie de ces noyaux, elle permet de remonter à différentes informations sur l'environnement local de l'atome. Elle doit son nom à Rudolf Mössbauer qui en a posé les bases en 1957 en démontrant l'existence de ces phénomènes d'absorption résonante sans effet de recul, ce qu'on appelle aujourd'hui l'effet Mössbauer.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
PresentThe present is the period of time that is occurring now. The present is contrasted with the past, the period of time that has already occurred, and the future, the period of time that has yet to occur. It is sometimes represented as a hyperplane in space-time, typically called "now", although modern physics demonstrates that such a hyperplane cannot be defined uniquely for observers in relative motion. The present may also be viewed as a duration.
PrésentismeDans la philosophie du temps, le présentisme est la théorie métaphysique selon laquelle seul le présent existe, contrairement au passé et au futur qui n'existent pas. Cette théorie s'oppose directement à l'éternalisme, théorie selon laquelle le passé, le présent et le futur existent tout autant. Le terme est utilisé pour la première fois dans les années 1920 : tout d'abord en 1921 par l'artiste Raoul Haussmann, du mouvement Dada, dans la revue De Stijl. En 1924, le philosophe français Frédéric Paulhan y recourt lui aussi.