Propriété topologiqueEn topologie et dans les domaines connexes des mathématiques, une propriété topologique (ou invariant topologique) est une propriété sur un espace topologique qui reste invariant sous l'application d'homéomorphismes. C'est-à-dire que chaque fois qu'un espace topologique X possède cette propriété, chaque espace homéomorphe à X possède également cette propriété. De manière informelle, une propriété topologique est une propriété qui peut entièrement être exprimée à l'aide d'ensemble ouverts.
Espace topologiqueLa topologie générale est une branche des mathématiques qui fournit un vocabulaire et un cadre général pour traiter des notions de limite, de continuité, et de voisinage. Les espaces topologiques forment le socle conceptuel permettant de définir ces notions. Elles sont suffisamment générales pour s'appliquer à un grand nombre de situations différentes : ensembles finis, ensembles discrets, espaces de la géométrie euclidienne, espaces numériques à n dimensions, espaces fonctionnels plus complexes, mais aussi en géométrie algébrique.
Suite périodiqueEn mathématiques, une suite périodique est une suite dont les termes sont obtenus par la répétition d'un même motif d'une ou plusieurs valeurs. La période est alors la taille du plus petit motif dont la répétition engendre la suite. En particulier, les suites constantes sont les suites périodiques de période 1. De telles suites apparaissent notamment dans le développement décimal des nombres rationnels. Plus exactement, un nombre réel est rationnel si et seulement si son développement décimal est périodique à partir d'un certain rang.
Espace de suites ℓpEn mathématiques, l'espace est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. Considérons l'espace vectoriel réel R, c'est-à-dire l'espace des n-uplets de nombres réels. La norme euclidienne d'un vecteur est donnée par : Mais pour tout nombre réel p ≥ 1, on peut définir une autre norme sur R, appelée la p-norme, en posant : pour tout vecteur . Pour tout p ≥ 1, R muni de la p-norme est donc un espace vectoriel normé.
Polynôme homogèneEn mathématiques, un polynôme homogène, ou forme algébrique, est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total. Par exemple le polynôme x + 2xy + 9xy est homogène de degré 5 car la somme des exposants est 5 pour chacun des monômes ; les polynômes homogènes de degré 2 sont les formes quadratiques. Les polynômes homogènes sont omniprésents en mathématiques et en physique théorique. Soit K un corps commutatif. Un polynôme homogène de degré d en n variables est un polynôme dans K[X, .
Framework WebUn framework Web ou framework d'application Web est un framework logiciel conçu pour prendre en charge le développement d'applications Web, notamment des services Web, des ressources Web et des API Web. Les frameworks Web fournissent un moyen standard de créer et de déployer des applications Web sur le World Wide Web. Les frameworks Web visent à automatiser les mécanismes les plus courants du développement Web.
Limite d'une suiteEn mathématiques, de manière intuitive, la limite d'une suite est l'élément dont les termes de la suite se rapprochent quand les indices deviennent très grands. Cette définition intuitive n'est guère exploitable car il faudrait pouvoir définir le sens de « se rapprocher ». Cette notion sous-entend l'existence d'une distance (induite par la valeur absolue dans R, par le module dans C, par la norme dans un espace vectoriel normé) mais on verra que l'on peut même s'en passer pourvu qu'on ait une topologie.
Spring (framework)En informatique, Spring est un framework open source pour construire et définir l'infrastructure d'une application Java, dont il facilite le développement et les tests. En 2004, Rod Johnson a écrit le livre Expert One-on-One J2EE Design and Development qui explique les raisons de la création de Spring. Spring est considéré comme un conteneur dit « léger ». La raison de ce nommage est expliquée par Erik Gollot dans l’introduction du document Introduction au framework Spring.
Groupe topologiqueEn mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
LongueurEn géométrie, la longueur est la mesure d'une courbe dans un espace sur lequel est définie une notion de distance. La longueur est une mesure linéaire sur une seule dimension, par opposition à la surface qui est une mesure sur deux dimensions, et au volume dont la mesure porte sur trois dimensions. La longueur d'une courbe ne doit pas être confondue avec la distance entre deux points, qui correspond au minimum des longueurs des chemins reliant ces points. La longueur est une grandeur physique et une dimension de base.