Multigrid methodIn numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid.
Système de reconnaissance facialeUn système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Détection de visagevignette|Détection de visage par la méthode de Viola et Jones. La détection de visage est un domaine de la vision par ordinateur consistant à détecter un visage humain dans une . C'est un cas spécifique de détection d'objet, où l'on cherche à détecter la présence et la localisation précise d'un ou plusieurs visages dans une image. C'est l'un des domaines de la vision par ordinateur parmi les plus étudiés, avec de très nombreuses publications, brevets, et de conférences spécialisées.
Méthode de surrelaxation successiveEn analyse numérique, la méthode de surrelaxation successive (en anglais : Successive Overrelaxation Method{', abrégée en SOR) est une variante de la méthode de Gauss-Seidel pour résoudre un système d'équations linéaires. La convergence de cet algorithme est généralement plus rapide. Une approche similaire peut être appliquée à bon nombre de méthodes itératives. Cette méthode a été découverte simultanément par et Stan Frankel en 1950 dans le but de résoudre automatiquement des systèmes linéaires avec des ordinateurs.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Équation aux dérivées partielles elliptiqueEn mathématiques, une équation aux dérivées partielles linéaire du second ordre, dont la forme générale est donnée par : est dite elliptique en un point donné x de l'ouvert U si la matrice carrée symétrique des coefficients du second ordre admet des valeurs propres non nulles et de même signe. En physique, les équations de Laplace, et de Poisson pour le potentiel électrostatique respectivement dans le vide et pour la distribution de charges sont de type elliptique.
Équation aux dérivées partielles hyperboliqueEn mathématiques, un problème hyperbolique ou équation aux dérivées partielles hyperbolique est une classe d'équations aux dérivées partielles (EDP) modélisant des phénomènes de propagation, émergeant par exemple naturellement en mécanique. Un archétype d'équation aux dérivées partielles hyperbolique est l'équation des ondes : Les solutions des problèmes hyperboliques possèdent des propriétés ondulatoires. Si une perturbation localisée est faite sur la donnée initiale d'un problème hyperbolique, alors les points de l'espace éloignés du support de la perturbation ne ressentiront pas ses effets immédiatement.
Matrix splittingIn the mathematical discipline of numerical linear algebra, a matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. Many iterative methods (for example, for systems of differential equations) depend upon the direct solution of matrix equations involving matrices more general than tridiagonal matrices. These matrix equations can often be solved directly and efficiently when written as a matrix splitting. The technique was devised by Richard S. Varga in 1960.
ÉclairageLéclairage est l'ensemble des moyens qui permettent à l'homme de doter son environnement des conditions de luminosité qu'il estime nécessaires à son activité ou son agrément. L'éclairage associe une source lumineuse (naturelle ou artificielle, fixe ou mobile) et d'éventuels dispositifs de type batteries, luminaires ou miroir/puits de Lumière. Les sources artificielles étaient le feu, des lampes à graisse, puis des lampes à huile, des torches, des bougies, les lampes à pétrole puis le gaz, puis des lampes électriques d’abord à incandescence (traditionnelle ou halogène) puis fluorescentes et électroluminescentes.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.