Resampling (statistics)In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are: Permutation tests (also re-randomization tests) Bootstrapping Cross validation Permutation test Permutation tests rely on resampling the original data assuming the null hypothesis. Based on the resampled data it can be concluded how likely the original data is to occur under the null hypothesis.
Régression localeLa régression locale, ou LOESS, est une méthode de régression non paramétrique fortement connexe qui combine plusieurs modèles de régression multiple au sein d'un méta-modèle qui repose sur la méthode des k plus proches voisins. « LOESS » est, en anglais, l'acronyme de « LOcally Estimated Scatterplot Smoothing ». La régression locale est une alternative possible aux méthodes habituelles de régression, comme la régression par les moindres carrés linéaire ou non linéaire, dans les cas où ces dernières s'avèrent mal adaptées.
CovarianceEn théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance.
Milieu de gamme (statistique)En statistique, le milieu de gamme ou le milieu extrême d'un ensemble de valeurs de données statistiques est la moyenne arithmétique des valeurs maximales et minimales dans un ensemble de données, défini comme: Le milieu de gamme est le point médian de la gamme ; en tant que tel, c'est une mesure de la tendance centrale. Le milieu de gamme est rarement utilisé dans l'analyse statistique pratique, car il manque d'efficacité en tant qu'estimateur pour la plupart des distributions d'intérêt, car il ignore tous les points intermédiaires et manque de robustesse, car les valeurs aberrantes le modifient considérablement.
HétéroscédasticitéEn statistique, l'on parle d'hétéroscédasticité lorsque les variances des résidus des variables examinées sont différentes. Le mot provient du grec, composé du préfixe hétéro- (« autre »), et de skedasê (« dissipation»). Une collection de variables aléatoires est hétéroscédastique s'il y a des sous-populations qui ont des variabilités différentes des autres. La notion d'hétéroscédasticité s'oppose à celle d'homoscédasticité. Dans le second cas, la variance de l'erreur des variables est constante i.e. .
Jeu de donnéesvignette|Représentation du jeu de données Iris sur ses quatre dimensions|420x420px Un jeu de données (en anglais dataset ou data set) est un ensemble de valeurs « organisées » ou « contextualisées » (alias « données »), où chaque valeur est associée à une variable (ou attribut) et à une observation. Une variable décrit l'ensemble des valeurs décrivant le même attribut et une observation contient l'ensemble des valeurs décrivant les attributs d'une unité (ou individu statistique).
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Problème d’agrégation spatialealt=MAUP distortion example|vignette|298x298px|Un exemple de problème d'agrégation spatiale et de distorsion du calcul NOTOC Un problème d’agrégation spatiale (en anglais, modifiable areal unit problem ou MAUP) est une source de biais statistique qui peut affecter radicalement les résultats dans les tests d’hypothèses statistiques. Elle agit lorsque les mesures de phénomènes spatiaux (ex. la densité de population) sont agrégées par secteur. Les sommaires résultants (ex.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
PrécipitationsLes précipitations désignent toutes les formes de l'eau à l'état liquide ou solide provenant de l'atmosphère. Ces hydrométéores (cristaux de glace ou gouttelettes d'eau), ayant été soumis à des processus de condensation et d'agrégation à l'intérieur des nuages, sont devenus trop lourds pour demeurer en suspension dans l'atmosphère et tombent au sol ou s'évaporent en virga avant de l'atteindre. Les précipitations se caractérisent par trois principaux paramètres : leur volume, leur intensité et leur fréquence qui varient selon les lieux et les périodes (jours, mois ou années).