Isomorphism classIn mathematics, an isomorphism class is a collection of mathematical objects isomorphic to each other. Isomorphism classes are often defined as the exact identity of the elements of the set is considered irrelevant, and the properties of the structure of the mathematical object are studied. Examples of this are ordinals and graphs. However, there are circumstances in which the isomorphism class of an object conceals vital internal information about it; consider these examples: The associative algebras consisting of coquaternions and 2 × 2 real matrices are isomorphic as rings.
Groupe super-résolubleEn algèbre, un groupe est dit super-résoluble s'il possède une suite normale (avec G normal dans G) dont tous les quotients G/G sont monogènes. Détaillons les implications strictes : super-résoluble ⇒ polycyclique ⇒ résoluble. Tout groupe super-résoluble est (notion plus faible où l'on demande seulement que chaque G soit normal dans G). Tout groupe polycyclique est résoluble (notion encore plus faible où de plus, on demande seulement que les quotients G/G soient abéliens).
Corps quasi-algébriquement closEn mathématiques, un corps K est dit quasi-algébriquement clos si tout polynôme homogène P sur K non constant possède un zéro non trivial dès que le nombre de ses variables est strictement supérieur à son degré, autrement dit : si pour tout polynôme P à coefficients dans K, homogène, non constant, en les variables X1, ..., XN et de degré d < N, il existe un zéro non trivial de P sur K, c'est-à-dire des éléments x1, ..., xN de K non tous nuls tels que P(x1, ..., xN) = 0.
Problème du mot pour les groupesEn mathématiques, plus précisément dans le domaine de la théorie combinatoire des groupes, le problème du mot pour un groupe de type fini G est le problème algorithmique de décider si deux mots en les générateurs du groupe représentent le même élément. Plus précisément, si X un ensemble fini de générateurs pour G, on considère le langage formel constitué des mots sur X et son ensemble d'inverses formels qui sont envoyés par l'application naturelle sur l'identité du groupe G.
Pseudo algebraically closed fieldIn mathematics, a field is pseudo algebraically closed if it satisfies certain properties which hold for algebraically closed fields. The concept was introduced by James Ax in 1967. A field K is pseudo algebraically closed (usually abbreviated by PAC) if one of the following equivalent conditions holds: Each absolutely irreducible variety defined over has a -rational point. For each absolutely irreducible polynomial with and for each nonzero there exists such that and . Each absolutely irreducible polynomial has infinitely many -rational points.
Groupe profiniEn théorie des groupes, un groupe profini est un groupe topologique obtenu comme limite projective de groupes finis discrets. La notion de groupe profini est particulièrement utile en théorie de Galois, pour pouvoir travailler avec des extensions infinies. Comme plus généralement en théorie des catégories, cette limite projective est uniquement définie à unique isomorphisme près. Elle peut être interprétée comme objet final d'une bonne catégorie.
Semi-simplicityIn mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, , and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context. For example, if G is a finite group, then a nontrivial finite-dimensional representation V over a field is said to be simple if the only subrepresentations it contains are either {0} or V (these are also called irreducible representations).
Group isomorphismIn abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.
Kaplansky's theorem on projective modulesIn abstract algebra, Kaplansky's theorem on projective modules, first proven by Irving Kaplansky, states that a projective module over a local ring is free; where a not-necessarily-commutative ring is called local if for each element x, either x or 1 − x is a unit element. The theorem can also be formulated so to characterize a local ring (#Characterization of a local ring). For a finite projective module over a commutative local ring, the theorem is an easy consequence of Nakayama's lemma.
Algèbre d'un groupe finiEn mathématiques, l'algèbre d'un groupe fini est un cas particulier d'algèbre d'un monoïde qui s'inscrit dans le cadre de la théorie des représentations d'un groupe fini. Une algèbre d'un groupe fini est la donnée d'un groupe fini, d'un espace vectoriel de dimension l'ordre du groupe et d'une base indexée par le groupe. La multiplication des éléments de la base est obtenue par la composition des index à l'aide de la loi du groupe, elle est prolongée sur toute la structure par linéarité.