Groupe divisibleEn mathématiques, et plus particulièrement en théorie des groupes, un groupe abélien divisible est un groupe abélien G tel que, pour tout nombre naturel n ≥ 1, on ait (en notation additive) G = nG. Ceci revient à dire que pour tout élément x de G et tout nombre naturel n ≥ 1, il existe au moins un élément y de G tel que x = ny. On peut étendre cette définition aux groupes non abéliens, un groupe divisible étant un groupe dans lequel (en notation multiplicative) tout élément est n-ième puissance, quel que soit l'entier naturel n ≥ 1.
Longueur d'un moduleLa longueur d'un module M sur un anneau A est un entier naturel ou l'infini. Elle généralise d'une certaine manière la notion de dimension d'un espace vectoriel sur un corps. Les modules de longueur finie ont beaucoup de particularités généralisant celles des espaces vectoriels de dimension finie. Les modules simples sont les modules M non nuls qui n'ont pas d'autres sous-modules que {0} et M. Par exemple, un espace vectoriel est simple en tant que module si et seulement si c'est une droite vectorielle.
Fonction de compte des nombres premiersEn mathématiques, la fonction de compte des nombres premiers est la fonction comptant le nombre de nombres premiers inférieurs ou égaux à un nombre réel x. Elle est notée π(x) (à ne pas confondre avec la constante π). L’image ci-contre illustre la fonction π(n) pour les valeurs entières de la variable. Elle met en évidence les augmentations de 1 que la fonction subit à chaque fois que x est égal à un nombre premier. Soit l'ensemble des nombres premiers et un nombre réel.
Catégorie préabélienneEn mathématiques, plus précisément en théorie des catégories, une catégorie préabélienne est une catégorie additive qui contient tous les noyaux et conoyaux. De manière plus détaillée, cela signifie qu'une catégorie C est pré-abélienne si: C est préadditive, c'est-à-dire enrichie sur une catégorie monoïdale de groupes abéliens (de manière équivalente, toutes les collections de morphismes d'un objet de C vers un objet de C sont des groupes abéliens et une composition de morphismes est bilinéaire) C contient tous les produits finis (de manière équivalente, tous les coproduits finis).
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Nombre premier de WilsonEn arithmétique, un nombre premier de Wilson est un nombre premier p tel que p divise (p – 1)! + 1, où ! désigne la fonction factorielle ; comparer ceci avec le théorème de Wilson, qui énonce que tout nombre premier p divise (p – 1)! + 1. Les seuls nombres premiers de Wilson connus sont 5, 13, et 563 () ; si d'autres existent, ils doivent être plus grands que 2 × 10. On conjecture qu'il existe une infinité de nombres premiers de Wilson, et que le nombre de nombres premiers de Wilson dans un intervalle [x, y] est d'environ log(log(y)/log(x)).
Nombre double de MersenneEn mathématiques, un nombre double de Mersenne est un nombre de Mersenne de la forme où n est un entier strictement positif et M désigne le n-ième nombre de Mersenne. Les plus petits nombres doubles de Mersenne sont donc : M = M = 1 ; M = M = 7 ; M = M = 127 ; M = M = = 7 × 31 × 151 ; M = M = 2 147 483 647 ; M = M = = 7 × 73 × 127 × 337 × × ; M = M = . Puisqu'un nombre de Mersenne M ne peut être premier que si n est premier (condition nécessaire mais pas suffisante), un nombre double de Mersenne M ne peut être premier que si M est un nombre de Mersenne premier (ce qui nécessite avant tout que p le soit : on a vu par exemple que M et M ne sont pas premiers).
Anneau local régulierEn mathématiques, les anneaux réguliers forment une classe d'anneaux très utile en géométrie algébrique. Ce sont des anneaux qui localement sont les plus proches possibles des anneaux de polynômes sur un corps. Soit un anneau local noethérien d'idéal maximal . Soit son espace tangent de Zariski qui est un espace vectoriel de dimension finie sur le corps résiduel . Cette dimension est minorée par la dimension de Krull de l'anneau . On dit que est régulier s'il y a égalité entre ces deux dimensions : Par le lemme de Nakayama, cela équivaut à dire que est engendré par éléments.