Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Moyenne pondéréeLa moyenne pondérée est la moyenne d'un certain nombre de valeurs affectées de coefficients. En statistiques, considérant un ensemble de données et les coefficients, ou poids, correspondants, de somme non nulle, la moyenne pondérée est calculée suivant la formule : quotient de la somme pondérée des par la somme des poids soit Il s'agit donc du barycentre du système . Lorsque tous les poids sont égaux, la moyenne pondérée est identique à la moyenne arithmétique.
Explained variationIn statistics, explained variation measures the proportion to which a mathematical model accounts for the variation (dispersion) of a given data set. Often, variation is quantified as variance; then, the more specific term explained variance can be used. The complementary part of the total variation is called unexplained or residual variation. Following Kent (1983), we use the Fraser information (Fraser 1965) where is the probability density of a random variable , and with () are two families of parametric models.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Analyse de la varianceEn statistique, lanalyse de la variance (terme souvent abrégé par le terme anglais ANOVA : analysis of variance) est un ensemble de modèles statistiques utilisés pour vérifier si les moyennes des groupes proviennent d'une même population. Les groupes correspondent aux modalités d'une variable qualitative (p. ex. variable : traitement; modalités : programme d'entrainement sportif, suppléments alimentaires; placebo) et les moyennes sont calculés à partir d'une variable continue (p. ex. gain musculaire).
Random effects modelIn statistics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy. A random effects model is a special case of a mixed model.
Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Analyse factorielleL'analyse factorielle est un terme qui désigne aujourd'hui plusieurs méthodes d'analyses de grands tableaux rectangulaires de données, visant à déterminer et à hiérarchiser des facteurs corrélés aux données placées en colonnes. Au sens anglo-saxon du terme, l'analyse factorielle (factor analysis) désigne une méthode de la famille de la statistique multivariée, utilisée pour décrire un ensemble de variables observées, au moyen de variables latentes (non observées).
Multilinear subspace learningMultilinear subspace learning is an approach for disentangling the causal factor of data formation and performing dimensionality reduction. The Dimensionality reduction can be performed on a data tensor that contains a collection of observations have been vectorized, or observations that are treated as matrices and concatenated into a data tensor. Here are some examples of data tensors whose observations are vectorized or whose observations are matrices concatenated into data tensor s (2D/3D), video sequences (3D/4D), and hyperspectral cubes (3D/4D).