Théorie des codesEn théorie de l'information, la théorie des codes traite des codes et de leurs propriétés et de leurs aptitudes à servir sur différents canaux de communication. On distingue deux modèles de communication : avec et sans bruit. Sans bruit, le codage de source suffit à la communication. Avec bruit, la communication est possible avec les codes correcteurs. En définissant l'information de façon mathématique, l'étape fondatrice de la théorie des codes a été franchie par Claude Shannon.
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Information contentIn information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory. The Shannon information can be interpreted as quantifying the level of "surprise" of a particular outcome.
Codage de HuffmanLe codage de Huffman est un algorithme de compression de données sans perte. Le codage de Huffman utilise un code à longueur variable pour représenter un symbole de la source (par exemple un caractère dans un fichier). Le code est déterminé à partir d'une estimation des probabilités d'apparition des symboles de source, un code court étant associé aux symboles de source les plus fréquents. Un code de Huffman est optimal au sens de la plus courte longueur pour un codage par symbole, et une distribution de probabilité connue.
Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
Interface utilisateurL’interface utilisateur est un dispositif matériel ou logiciel qui permet à un usager d'interagir avec un produit informatique. C'est une interface informatique qui coordonne les interactions homme-machine, en permettant à l'usager humain de contrôler le produit et d'échanger des informations avec le produit. Parmi les exemples d’interface utilisateur figurent les aspects interactifs des systèmes d’exploitation informatiques, des logiciels informatiques, des smartphones et, dans le domaine du design industriel, les commandes des opérateurs de machines lourdes et les commandes de processus.
Information mutuelleDans la théorie des probabilités et la théorie de l'information, l'information mutuelle de deux variables aléatoires est une quantité mesurant la dépendance statistique de ces variables. Elle se mesure souvent en bit. L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste. Ce concept de dépendance logique ne doit pas être confondu avec celui de causalité physique, bien qu'en pratique l'un implique souvent l'autre.
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Probabilistic numericsProbabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.